
Using ANNOTATE MACROS as Shortcuts

Arthur L. Carpenter
California Occidental Consultants

Abstract
ANNOTATE macros can
provide a shortcut when
creating an ANNOTATE data
set using assignment
statements. To be used
properly you need to
understand how they work and
what they will do for you. They
will not abrogate your need to
understand how the process of
creating the data set works.
Indeed you need to have a good
understanding of how the
ANNOTATE data set is
constructed before you should
attempt to use these macros.

Keywords
ANNOTATE, macro, annomac,
SAS/GRAPH

Introduction
The process of creating
observations in an ANNOTATE
data set can be simplified
through the use of ANNOTATE
macros. Since macros are
executed before the data step is
compiled and executed, these
macros can be used to generate
the assignment statements that
you would otherwise create
yourself.

These macros are predefined to
give the user the ability to
control all of the basic variables
associated with given
ANNOTATE function. When
controlling a function the macro
name usually takes on the
name of the function that is to
be defined. Using these macros
can eliminate some of the
tedium associated with the use
of assignment statements.

When using ANNOTATE
macros it is important to
remember that the macro call
will be resolved into a series of
DATA step assignment

statements. These are the
assignment statements that you
could have written if you had
chosen not to use the macro.

There are two types of
ANNOTATE macros those that
prepare or manage the
environment and those that
define functions. Primarily you
will want to use macros to
replace the series of
assignment statements
associated with a particular
function.

Macros that prepare the
environment include:

%ANNOMAC Always required -
compiles all
other
ANNOTATE
macros and
makes them
available for use.

%DCLANNO Specifies the
correct length for
all ANNOTATE
variables.

%SYSTEM Used to define
the type of
coordinate
reference system
by assigning
values to the
variables XSYS,
YSYS, and
HSYS.

Macros used to replace
assignment statements
associated with functions
include:

%BAR Creates a fillable
rectangle.

%CIRCLE Draws an empty
circle.

%DRAW Draws a line to a
specific point.

%LABEL Write text at the
specified location.

%MOVE Moves to a specific
point without drawing.

%POLY Begins drawing a
polygon.

%POLYCONT Continues
drawing a
polygon.

ANNOTATE macros cannot be
used unless the %ANNOMAC
macro has been called
somewhere in the job (prior to
the calls of any other
ANNOTATE macro). This
macro compiles all of the
remaining ANNOTATE macros
which are then added to
WORK.SASMACR.

Unlike the calls to many
functions all arguments to the
macros must be specified.
Even when you want to use the
default value for the argument,
the default value must be
included (missing values can be
used in most cases to achieve
the default value). The macro
uses the argument to build one
or more assignment statements.
Since very little checking is
done by the macro, blank
arguments are more likely to
cause errors than to result in
the default value for a particular
option.

The arguments for the macros
may be constants (numbers or
character strings), variable
names, or literal strings. You
will need to consult the
documentation in the
SAS/GRAPH Reference Manual
(Vol. 1 pp.570-587) to
determine which is expected for
a particular argument.

constant use a number or a
quoted string.

variable name the variable
needs to be on
the PDV and is
not quoted.

literal strings these strings will
be placed inside
of quotes by the
macro and so
are not quoted in
the macro call.
The reference
manual indicates
which arguments
are to be literals.

Two typical ANNOTATE macros
are highlighted below to give
you a general feel for the syntax
and usage.

%SYSTEM
The syntax for the %SYSTEM
macro is:

%system(xsys, ysys, hsys)

where each argument is a literal
and can be 1 through 9 and A,
B, or C. These values
correspond to the coordinate
reference systems e.g. XSYS=’3'
is the absolute percentage of
the Graphics Output Area.

The following portion of a
SASLOG was generated using
the MPRINT system option. It
shows the statements
generated by the %SYSTEM
macro. The macro requests
that the ‘Graphics Output Area -
percentage’ be used as the
basis for the coordinates.
Notice that the third argument is
not specified. This results in
HSYS being missing.

182 %system(3,3);
MPRINT(SYSTEM): XSYS = "3";
MPRINT(SYSTEM): YSYS = "3";
MPRINT(SYSTEM): HSYS = "";

HSYS is used by several
ANNOTATE functions when
establishing the coordinate
system or units to use when
requesting such things as a
height for a character or a

length of a line. The
documentation should be
consulted as to which functions
use HSYS. The %LABEL and
%SLICE macros (shown below)
both use HSYS.

%LABEL
The syntax for the %LABEL
macro is:

%label(x,y,text,color,angle,
rotate, size, style, position)

where
x & y specify

coordinates
for the text
string

text text string or
character
variable
containing string
to be placed

color literal (quotes
are not used) -
color of the text

angle number or
numeric
variable -
writes text
at an angle

rotate number or
numeric
variable -
rotates
individual
characters
of the text

size number or
numeric variable
- specifies the
text size

style literal - font to be
used for the text

position literal - position
of text relative to
the X,Y
coordinate

The following portion of the
SASLOG shows the statements
generated by the %LABEL
macro.

106 %label(50,75,
 'Home Wanted',blue,.,.,4,script);
MPRINT(LABEL): X = 50;
MPRINT(LABEL): Y = 75;

MPRINT(LABEL): ANGLE = .;
MPRINT(LABEL): ROTATE = .;
MPRINT(LABEL): SIZE = 4;
MPRINT(LABEL): STYLE = "script";
MPRINT(LABEL): TEXT = 'Home Wanted';
MPRINT(LABEL): IF "" =: '*' THEN ;
MPRINT(LABEL): ELSE POSITION = "" ;
MPRINT(LABEL): IF "blue" =:'*' THEN ;
MPRINT(LABEL): ELSE COLOR = "blue";
MPRINT(LABEL): FUNCTION = "LABEL ";
MPRINT(LABEL): OUTPUT;

In the above example the last
argument of the %LABEL macro
call was left blank. An
examination of the code (bolded
above) shows that this did not
result in an error for this
argument. As a general rule it
is not wise to leave arguments
blank.

Building a GSLIDE
The example below creates
three labels using ANNOTATE
macros. The equivalent
assignment statements have
also been included (but
commented out) to show what
code the ANNOTATE macros
are producing. Of course if the
commented code is removed
the program becomes much
shorter.

%annomac

* USE PROC GSLIDE AND ANNOTATE TO
* CREATE A CLASSIFIED AD FOR ANNIE.;
DATA ANNIE;
LENGTH FUNCTION COLOR STYLE $8;

*RETAIN XSYS YSYS '5';
%system(5,5)

*COLOR='BLUE';
*STYLE='SCRIPT';
*SIZE=4;
*TEXT='Home Wanted ';
*Y=75;
*OUTPUT;
%label(50,75,'Home Wanted ',
 blue,0,0,4,script);

*SIZE=2;
*Y=50;
*STYLE='DUPLEX';
*TEXT='GIRL - WITHOUT EYES';
*OUTPUT;
%label(50,50,'GIRL - WITHOUT EYES',

 *,0,0,2,duplex);

*Y=30;
*STYLE='TRIPLEX';
*COLOR='GREEN';
*TEXT='Has Dog / Will Travel';
*OUTPUT;
%label(50,30,'Has Dog / Will Travel',
 green,0,0,2,triplex);
run;

PROC GSLIDE ANNO=ANNIE;
TITLE1 F=SWISS H=3 'Classified Ad';
run;
quit;

After removing the commented
code, the DATA step that
creates the ANNOTATE data
set ANNIE becomes:

* USE PROC GSLIDE AND ANNOTATE TO
CREATE A CLASSIFIED AD FOR ANNIE.;
DATA ANNIE;
LENGTH FUNCTION COLOR STYLE $8;
%system(5,5)
%label(50,75,'Home Wanted '
 ,blue,0,0,4,script);
%label(50,50,'GIRL - WITHOUT EYES',
 *,0,0,2,duplex);
%label(50,30,'Has Dog / Will Travel',
 green,0,0,2,triplex);
run;

The length of the TEXT variable
in the previous DATA step is set
in the first %LABEL by padding
the string with blanks. It is
generally smarter to use a
LENGTH statement.

Although the new program is
much shorter (fewer
statements) than one that uses
assignment statements, it is not
more efficient from the
computer’s point of view. We
are now using the %SYSTEM
macro to write assignment
statements to assign the values
to XSYS and YSYS when the
RETAIN would be quicker. Also
the macros create and assign
values to a number of variables
that are not needed and really
should be dropped. These
include HSYS, POSITION,
ANGLE, and ROTATE.

Creating a windrose plot using %SLICE and
%DRAW
The windrose plot takes its
name from plots of wind speed
and direction. Windrose plots
are a type of histogram and are
useful when the extreme values
of the histogram’s midpoint
variable are related. Typical
applications include any
histograms involving direction,
clock time, or other cyclical
values.

In the example below the
frequency of ocean current
direction and current speed
information was collected over a
four month period in 1986 near
a power station on the Pacific
coast of California. A frequency
histogram of the compass
bearings fails to highlight the
relationship between between
the extreme directions (0-20
degrees and 340-360 degrees).
This relationship can be
highlighted by the use of the
windrose plot (or in this case a
current rose).

Each observation in the data set
CURRENT represents the
average current direction (DIR)
and speed (RES) for that day.
The statistics, frequency
(NOBS) and mean speed
(SPEED), are then calculated
with a PROC MEANS.

proc sort data=current;
by dir;
run;

proc means data=current noprint;
by dir;
var res;
output out=stats n=nobs mean=speed;
run;

The current diagram shown below was drawn
entirely using ANNOTATE. The %MOVE and
%DRAW macros were used to draw the coastline
for a visual reference. In this case the coordinates
are provided in the code, but more typically they
will be provided in a separate data set.

%annomac

data anno;
set stats;
retain xsys ysys hsys '5';

* draw the coast line once;
if _n_=1 then do;
 %move(47,80)
 %draw(51,67,black,1,1)
 %draw(65,52,black,1,1)
 %draw(69,43,black,1,1)
 %draw(77,38,black,1,1)
 %draw(78,30,black,1,1)
 %draw(86,18,black,1,1)
 %draw(88,15,black,1,1)
 %label(47,80,'Pacific Coast',
 black,.,.,5,duplex,3)
end;

The %SLICE macro is used to create a pie slice for
each direction. The direction (DIR) variable is
used to determine the orientation of the pie slice
and its length is a function of the frequency
(NOBS).

The length of the plot lobes
(RADIUS) indicates the
frequency of that direction (each
lobe has an angle of 20
degrees). The lobe is then
centered in this case at the
point 50,50 percent, and is
oriented by using the direction
of the current (DIR) to specify
the angle.

* draw the pie slice;
* adjust the radius of the slice;
radius = nobs*2.0;
%slice(50,50,dir,20,radius,
 blue,empty,both)

The average speed associated with each direction
is added to each slice as a label using the
%PIEXY and %LABEL macros. %PIEXY is used
to find the center of a pie slice and determine a
point outside of the end of the arc that can be used
to attach a label. The second argument of
%PIEXY is a multiplier of the radius. In the code
below a multiplier of 1.1 is used to move the label
just outside of the arc. A multiplier of less than one
can be used to put labels inside of the slice.
ANNOTATE ‘remembers’ locations of points from
observation to observation in the ANNOTATE data
set with the internal coordinate variables XLAST,
YLAST, XLSTT, and YLSTT. Functions that write
text tend to use the latter two while functions that
draw or move use the former (XLAST, YLAST).
Values may need to be exchanged between the
two sets of coordinates when placing a label at a
point established by a function that updates
XLAST and YLAST. The %CNT2TXT macro
performs this operation.

* prepare to add the slice label;
text = put(speed,5.1);
lblang = dir+10;
%piexy(lblang,1.1)
%cntl2txt
%label(.,.,text,black,.,.,4,simplex)
run;

proc gslide anno=anno;
title1 'Current Direction Frequency';
title2 h=1.5 f=simplex
 'with Average Speed (cm/sec)';
run;
quit;

This graph does not yet seem
finished. There are several
fixes that will improve the
appearance of this presentation.

C The average speed labels
are a bit cluttered for the
shorter lobes. Conditional
processing when assigning
these values can eliminate
these labels.

C The labels for the ‘upcoast’
currents tend to fall on or
too near the end of their
sectors. The ANNOTATE
variable POSITION can be
made conditional on the
orientation of the lobe.

Although the plot was generated
the code did not run without
errors (warnings). Because the
ANNOTATE macros define the
length of some of the
ANNOTATE variables (e.g.
STYLE and COLOR) by how
they are used the first time, the
LENGTH statement is often
useful.

* Finish the figure;
data anno;
set stats;
length style color $8;
retain xsys ysys hsys '5';

This figure adds a label for the position of the
power plant and a lobe that acts as a legend for
frequency.

* draw the coast line and a legend
once;
if _n_=1 then do;
 * Add a sample segment;

%slice(20,15,0,20,20,blue,empty,both)
%label(20,12,'10 Current readings',
 black,.,.,4,simplex,6)
 * draw the coast line;
 %move(47,80)
 %draw(51,67,black,1,1)
 %draw(62,52,black,1,1)
 %draw(65,43,black,1,1)
 %draw(67,38,black,1,1)
 %draw(73,30,black,1,1)
 %draw(84,18,black,1,1)
 %draw(85,15,black,1,1)
 %label(47,80,'Pacific Coast',
 black,.,.,5,duplex,3)
 %label(56,58,'* Power Plant',
 black,.,.,5,duplex,3)
end;

The POSITION of the slice label is changed
according to the orientation of the slice and the
multiplier has been slightly increased to move the
labels further from the end of the slice.

* prepare to add the slice label;
text = put(speed,5.1);
* Center the label in the slice (add 10
degrees);
lblang = dir+10;
* Adjust position of the label;
if 0 le dir le 90 then position='3';
else if 90 lt dir le 180 then
position='1';
else if 180 lt dir le 270 then
position='7';
else if 270 lt dir le 360 then
position='9';
%piexy(lblang,1.2)

The label for the slice is then conditionally
executed for directions with frequencies that are
greater than or equal to 5.

* Only add a label for slices that are
* more frequent;
if nobs ge 5 then do;
 %cntl2txt
 %label(.,.,text,black,.,.,4,simplex)
end;
run;

The resulting diagram contains the same
frequency information as does the earlier
histogram.

Summary
ANNOTATE macros are not used to minimize the
size of ANNOTATE data sets. They can however
be very effective in minimizing the number of
statements used to build a ANNOTATE data set.
The macros are used to replace a series of
assignment statements that would otherwise have
to be specified individually.

Trademark Information
SAS and SAS Quality Partner are registered
trademarks of SAS Institute, Inc. in the USA and
other countries.
® indicates USA registration.

About the Author
Art Carpenter’s publications list includes
two chapters in Reporting from the Field,
the two books Quick Results with
SAS/GRAPH® Software, and Carpenter's
Complete Guide to the SAS® Macro

Language and over two dozen papers and posters
presented at SUGI, WUSS, and PharmaSUG. Art
has been using SAS since 1976 and has served
as a steering committee chairperson of both the
Southern California SAS User's Group,
SoCalSUG, and the San Diego SAS Users Group,
SANDS; a conference cochair of the Western
Users of SAS Software regional conference,
WUSS; and Section Chair at the SAS User’s
Group International conference, SUGI.

Art is a SAS Quality PartnerTM and through
California Occidental Consultants he teaches SAS
courses and provides contract SAS programming
support nationwide.

Author Contact
Art Carpenter

California Occidental Consultants
PO Box 430
Vista, CA 92085-0430

(760) 945-0613

art@caloxy.com
www.caloxy.com

