
California Occidental Consultants

Functions provide access to powerful tools
and routines that make our everyday
programming life easier. However since
there are so many functions, some
programmers are unaware of potentially
valuable tools. To make matters worse
many functions have been added to the SAS
System since the Version 6 manuals were
first published, and consequently many of
these functions are under utilized.
Additionally most of the functions that were
originally only available in Screen Control
Language are now, starting with the latest
releases of Version 6, available in the DATA
step.

Selected functions from the categories of
new, under utilized, neglected, and formerly
SCL are discussed through the use of
examples.

Functions, DATA step, P-222, SCL, Screen
Control Language

SAS provides a large number of pre-written
subroutines for common operations. These
functions return a value that can be a part of

The DATA step can now utilize many of the
functions that were originally introduced in
Screen Control Language. New macro
functions have also been added as has the
ability to access DATA step functions through
the macro language.

Functions have always been a powerful tool
of the base SAS System, now they are even
stronger and more useful.

Features of SAS functions include:

� returns a value from a computation or
manipulation

� requires zero or more arguments

� function name is always followed by
parentheses

� a function is used as part of a SAS
expression

The syntax for function calls can be
expressed as:

functionname(argumentlist)

The number of function arguments and how
they are separated varies from function to
function. In general function arguments are:

� separated by commas, unless the
arguments are a list of variables

Use of selected functions

M
F L M E T
N N A A O

Y
D A A W W X N D D

E
O M M T T W W A A

A

commas. Notice that an expression can be a
function argument.

total =
sum(jancost,5,febcost-febadj);

The OF operator can be used to eliminate the
need for commas.

total =
sum(of jancost 5 febcost-febadj);

Variable name shorthand can be used when
the OF operator is used, and the list of
variables have a common prefix and a
numeric suffix.

total = sum(of month1-month12);

Function arguments can include calls to other
functions. Below MAXTOT will contain the
maximum of either the budget or the average
of the twelve monthly values.

maxtot =
max(mean(of month1-month12),
 budget);

CHARACTER FUNCTIONS

The following example converts names that
are of the form

"LASTNAME, FIRSTNAME"
into separate variables for the first and last
name. Three different ways of determining
the first name are shown. The variable NAME
in the data set NAMES contains values such
as:

Jones, Clint
Doe, Jane
Adams, Scott

fname2 =
 substr(name, col+2,len-col-1);
run;

The index function has been used to ‘find’ the
comma and note its location in the variable
COL. This information is used in the SUBSTR
function to extract the first and last names.

NUMERIC FUNCTIONS

In the following example a single observation
from a weight gain study is shown. The PDV
for the data set WTGAIN is:

DOB AGE FNAME LNAME WT1 WT2 SEX

04jun75 18 Clint Jones 159 170 M

The following DATA step and will create the
values that are in the PROC PRINT listing
shown below:

data funct;
set wtgain;

* statistics functions;
maxwt = max(wt1, wt2);
meanwt = mean(of wt1 wt2);

*date functions;
today = date();
day = day(dob);
year = year(dob);
run;

Because there have been almost continuous
updates to the software without updates to
the primary written documentation, a number
of functions are not fully utilized. Also some
functions are less easily understood or their
purpose is not immediately obvious, and they
are therefore not as often incorporated into
programs. This section contains some
functions that are useful, but fall into this
category.

DATE FUNCTIONS

Most date functions are well known, however
the following two seem to be somewhat
neglected.

�INTCK
Returns the number of time intervals in a
given time span. The FROM and TO values
are adjusted to the start of the stated
INTERVAL. This means that ‘22mar1999'd
will be seen as ‘01mar1999'd if the interval is
‘MONTH’ and as ‘01jan1999'd if the interval
is ‘YEAR’.

SYNTAX
intck('interval', from, to)

Where interval can include day, month, week,
qtr, and others.

EXAMPLE
data a;
dob = '05apr78'd;
today = today();
days = intck('day' ,dob,today);
weeks = intck('week',dob,today);
years = intck('year',dob,today);
run;

proc print data=a;

in DOB.

age1 = (today-dob)/365.25;

age2 =
int(intck('month',dob,today)/12);
if month(dob) = month(today) then

age2 = age2 -
(day(dob)>day(today));

AGE1 tends to be the more mathematically
accurate, but does not represent how we
normally express age the age is not
advanced until the day of the birthday and
fractional years are not used. For AGE2,
INTCK is used to calculate complete months,
which is used to determine full years. An
adjustment is then made if the birthday has
transpired for the current year.

�INTNX
Advances a date, time or datetime value by a
given number of intervals.

SYNTAX
intnx('interval', from, number)

EXAMPLE
A common problem in accounting situations is
to find complete date intervals. In the following
step we would like to determine the starting and
ending date of the last complete month for a
given date (CDATE). The INTNX function is
ideal for this purpose.

data a;
cdate = '12dec1995'd;
* Determine the start and endpoints;
* for the previous month;
mbeg = intnx('month', cdate, -1);
mend = intnx('month', cdate, 0) -1;
* Date 3 months in the future;
mon3 = intnx('month', cdate, 3)+

Using the INTNX Function
Function returns the interval start

 CDATE MBEG MEND MON3

12DEC1995 01NOV1995 30NOV1995 12MAR1996

CHARACTER FUNCTIONS

These functions manipulate and work with
character strings.

�COMPBL
Removes multiple blanks between words in a
character string.

SYNTAX
compbl(string)

EXAMPLE
city = 'Los Angeles';
short = compbl(city);

The variable SHORT takes on the value of 'Los
Angeles'.

�INDEXC
Searches a character string for any of a series
of characters contained in one or more
excerpts. The column number of the first
character (from any in the excerpts) is returned.

SYNTAX
indexc(string,excerpt1,excerpt2,...)

EXAMPLE
data a;
namelist =
 'Billie-Bob aBob Boba Bob';

�INDEXW
Searches a character string for a sub-string
pattern that begins and ends on a word
boundary. P-222 the original documentation for
this function only specified that it searched for
strings ‘starting’ on word boundaries.

SYNTAX
indexw(string,excerpt)

EXAMPLE
data a;
namelist =
 'Billie-Bob aBob Boba Bob';
namecol = indexw(namelist,'Bob');
put namecol=;
run;

The numeric variable NAMECOL will have a
value of 22.

�GETOPTION
Retrieves current option settings. These can be
used to reconstruct the current settings if your
program might alter option settings during
execution.

SYNTAX
getoption(optionname,<keyword>)

The first argument is the selected option,
which can include graphics options
(goptions). If the KEYWORD argument is
included and the option is normally set using
an equal sign (it is not a on/off type
option), the returned value will include the
option name followed by an equal sign.

EXAMPLE
In the following example the current value of
the PS option is stored in variables VALUE
and KEYFORM. These are then output to

value is 54
using keyword PS=54

This function is especially useful when
combined with the %SYSFUNC macro function.

�LOWCASE
Converts a character string to all lower case
characters. This is the functional opposite of
the UPCASE function.

SYNTAX
lowcase(string)

EXAMPLE
x = 'ABCD1234';
low = lowcase(x);

The character variable LOW will have a
value of 'abcd1234'.

�TRIM
TRIM is used to remove trailing blanks from
a character string.

SYNTAX
trim(string)

EXAMPLE
part1 = 'Los ';
part2 = 'Angeles ';
untrimd = part1 || part2;
trimmed =
 trim(part1)||' '||part2;

UNTRIMD is 'Los Angeles '
TRIMMED is 'Los Angeles '

�TRANSLATE
Replaces specific characters in a text string
with other characters. Note the order of the
second and third arguments which seem

numbers =
 translate(letters,'137','ACG');
The variable NUMBERS will contain '1B3DEF7'.

�TRANWRD
Replaces a set of characters in a text string with
another set of characters.

SYNTAX
tranwrd(string, target,new)

EXAMPLE
name = 'Mrs. Johnson';
name =
 tranwrd(name,'Mrs', 'Ms');

The variable NAME will be:
 'Ms. Johnson'.

�SOUNDEX
Encodes a character string to a numeric value
to facilitate character searches. The first letter
is maintained, vowels are dropped, double
letters are compressed, and the remaining
letters are assigned numeric values.

SYNTAX
soundex(string)

EXAMPLE
* find all variations of the
* last name JOHNSON;
if soundex(name) =
soundex('Johnson');

The value of soundex('Johnson') is
'J525' and each of the following variations
would be selected:

'Johnnson'
'Jonson'
'Johnsen'.

Changing a Value

OBS X RND INT CEIL FLOOR

1 -6.63 -6.6 -6 -6 -7
2 -2.28 -2.2 -2 -2 -3
3 6.63 6.6 6 7 6
4 2.28 2.2 2 3 2

EXAMPLE
data _null_;
dist0 =
 spedis('Johnson','Johnson');
dist1 =
 spedis('Johnnson','Johnson');
dist2 =
 spedis('Jonson','Johnson');
dist3 =
 spedis('Johnsen','Johnson');
dist4 = spedis('Fred','Johnson');
put dist0= dist1= dist2=;
put dist3= dist4=;
run;
The LOG shows:

DIST0=0 DIST1=6 DIST2=8
DIST3=14 DIST4=162

NUMERIC FUNCTIONS

Numeric functions operate on numeric values
and return numeric results.

�ROUND, CEIL, FLOOR, INT
These functions are used to adjust the value
of a number. Note the behavior of these
functions for both positive and negative
values.

SYNTAX
round(number,nearest_value)
ceil(value)
floor(value)
int(value)

EXAMPLE
data a;
x=-6.63; output;
x=-2.28; output;
x= 6.63; output;
x= 2.28; output;
run;

run;

The PROC PRINT produces the following table.

Starting with V6.11 many of what had been
exclusively SCL functions, became available in
the DATA step. These functions are now
indistinguishable from the traditional DATA step
functions, except that they are documented in
the SCL Reference Manual (Second Edition)
Chapter 20, and are summarized in Chapter 19
pp. 201-220.

�LIBNAME
The LIBNAME function allows you to
conditionally create a libref in a DATA step.

SYNTAX
libname('libref','path',
 <engine>,<options>);

EXAMPLE
This example clears a libref prior to re-
establishing it.

data _null_;
* Clear the libref JUNK prior
* to re-establishing it;
sysrc = libname('junk','');
* Create the libref JUNK;

�SYSMSG
The SYSMSG function will return a text
description of the results of the function in the
preceding statement. It returns a blank if the
last result was successful.

SYNTAX
sysmsg()

The example for the LIBREF function which
follows, includes the use of the SYSMSG
function.

�LIBREF
This function returns a 0 if the specified libref
has been defined.

SYNTAX
libref('libref')

EXAMPLE
data _null_;
x = libref('sasuser');
put x=;
if libref('dbmsout') then

msg= sysmsg();
put msg=;
run;

The LOG shows:

X=0
MSG=ERROR: Libname DBMSOUT is not
assigned.

�PATHNAME
The PATHNAME function returns the physical
path associated with an established libref.

SYNTAX
pathname(libref)

* then clear it;
if libref('dbmsout') then
 libname('dbmsout','');
* Create a libref for the;
* stated engine;
sysrc =
 libname('dbmsout',aa,'v604');
run;

A more complete example of this and the
following function can be found in Carpenter,
1998.

�EXIST
The EXIST function can be used to determine if
a data set exists or if it is known to the system.

SYNTAX
exist(datasetname)

EXAMPLE
The following DATA _NULL_ step is used to
determine if a data set exists, and then creates
a macro variable for use later.

data _null_;
* Specify the data set name;
dsn = 'sasuser.feeder';
if exist(dsn) then
 call symput('exist','Y');
else call symput('exist','N');
run;
%put ∃

When the specified data set exists, the
macro variable &EXIST takes on the value of
‘Y’.

DATA step functions provide powerful tools

recently added to the DATA step. Many of
the functions that were originally
implemented in Screen Control Language
have now been made available to the DATA
step.

Art Carpenter’s publications list includes
three books (,

® ,
and ®

), two chapters in
, and over three dozen papers

and posters presented at SUGI,
PharmaSUG, and WUSS. Art has been
using SAS since 1976 and has served in a
variety of positions in user groups at the
local, regional, and national level.

Art is a SAS Quality PartnerTM and
SAS Certified ProfessionalTM.
Through California Occidental
Consultants he teaches SAS

courses and provides
contract SAS
programming support

nationwide.

Art Carpenter
California Occidental Consultants
P.O. Box 6199
Oceanside, CA 92058-6199

(760) 945-0613

art@caloxy.com
www.caloxy.com

Carpenter, Arthur L.,
® , Cary, NC:

SAS Institute Inc., 1998, 242 pp.

SAS Institute Inc., SAS® Technical Report P-
222,

® , Cary, NC: SAS
Institute Inc., 1991, 344 pp.

SAS, SAS Certified Professional, and SAS
Quality Partner are registered trademarks of
SAS Institute, Inc. in the USA and other
countries.

® indicates USA registration.

