
A Bit More on Job Security: Long Names and Other V8 Tips
Arthur L. Carpenter, California Occidental Consultants

Tony Payne, SPSInfoquest

ABSTRACT
With the advent of the Nashville releases of the SAS® System
(Versions 7 and 8), a number of new opportunities have been
added to the toolboxes of Job Security afficionados. In previous
presentations and papers (Carpenter, 1993; Carpenter and
Payne, 1998) a series of tips and techniques have been foisted
on the unsuspecting SAS user community with the objective of
increasing the job security of SAS programmers by making
them indispensable to their bosses.

The list of tips continues to grow. And now with the added
features of the Nashville releases, the list is greatly expanded.
One area of special interest for job security specialists has
revolved around the naming of variables and data sets. Now
with the relaxed restrictions for SAS names comes a large
number of both challenges and opportunities. New system
options and the advent of the Output Delivery System, ODS,
also provide a number of techniques that will surely become
favorites in the future. Of course new tips and techniques for
all releases are constantly being uncovered, and a number of
these are also included.

Become a Job Security Advocate.

KEY WORDS
Job Securtiy, datastmtchk, yearcutoff, literal, ODS, audit tail,
integrity constraints

VARIABLE NAMES
Long Variable Names
With 8 characters we might employ naming variations such as:
QWRTXZQR HHHIIHIH WVWVWVVW
QWRTZXQR HHIHIHIH WVWWVWVW

Since variable and data set names can now have up to 32
characters, we no longer need to stop so soon.
WVWVWVVWVWWVWVWVVVWWWVVVVWWW
WVWWVWVWVWWVWVWVVVWWWVVVVWWW

This is of course not very subtle, try instead:
ThisVariableStoresThePatientHeight
ThisVariableStoresThePatientHieght

Odd Variable Names
You can make any character valid in a variable name by setting
the system option VALIDVARNAME to ANY. The variable
name is then enclosed in a name literal. The statement:

name=’Tom’n;

assigns the value of the variable TOM (not the letters T-O-M)
to the variable NAME. If this was not valuable enough by
itself, add spaces and arithmetic operators:

data new;
'Tom; wt=5+wt'n = 5;
name='Tom; wt=5+wt'n + 6;
put 'Tom; wt=5+wt'n= name=;
run;
The LOG shows:

'Tom; wt=5+wt'n=5 name=11

Other possibilities include:

"a dog chases a cat"n=5.5;
"3+3"n="Six";
normvar_6="3+3"n;

The use of the name literal should prove quite useful because
our eyes and minds have been trained to see quoted strings as
literal values, not quoted variable names. We also will have to
now look at statements with blanks and other symbols
differently. At the very least we can now force those who have
the misfortune to read our programs to spend a lot more time
scratching their heads.

Misdirected Names and Labels
Since long names can contain more information make use of it.
The following statement is used to store the patient’s age.

height_of_patient=27;

You can now tell a whole story with long labels. For the same
variable:

Label height_of_patient = 'The patients
height has been recorded in inches unless
the month was odd, then oddly enough, it
is recorded in years';

USING QUOTES AND COMMENTS
Unbalanced Quotes
BAD NEWS FOR JOB SECURITY EXPERTS: V8 has a very
nasty context editor which tells you when quotes are
unbalanced. Techniques involving unbalanced quotes must be
reviewed and are often no longer recommended. The Enhanced
Editor also identifies keywords and may also invalidate some
techniques using keyword-variable name confusion. Missing
semi-colon and extended comment techniques are also
jeopardized. Fortunately the Enhanced editor can be turned off
and is not required at SAS installation.

Titles and Labels
Quotes are no longer required in the TITLE and LABEL
statements. This was true in earlier releases also, but has not
been heavily advertized. What is the value of AGE after
applying these two assignment statements?

age = 10; *Add a ;label
age = age + 5; *Add 5 to age;

Oops, did I say assignment statements? I meant to mention the
label statement. The value of AGE, of course, remains 10.

Invisible Comments
With the Enhanced Editor pointing out incomplete comments, it
becomes more important to be able to hide dangling comments.
Consider adding a portion of a comment at the end of a tried
and true, known to be good program that is brought in through
the %INCLUDE statement. HINT: Folks tend to not check
things that are known to be good.
.....known good code.....
/* end of good code

%include knowngood;
data new; set old; run;
/* above step is VERY important */

The DATA step has now been completely commented, and it is
actually the */ that terminates the comment started in the
included code. The first */ that SAS comes across 'closes' the
comment, and SAS starts processing again, having ignored all
the code between the %include and the end of the comment.

V8 OPTIONS
Yearcutoff
The default value of YEARCUTOFF changes from 1900 to
1920. While this change may be sufficient, consider the
following OPTION statement to assign YEARCUTOFF.

options yearcutoff=
%sysevalf(%sysfunc(ranuni(0))*100+1900,ceil
);

Another interesting aspect of the YEARCUTOFF option is that
although SAS can correctly handle 5 digit years none of the
formats can display all five digits. As is demonstrated below,
formats that show two digits of the year work fine (with the
added benefit of being a tad misleading), while formats that
attempt to show 4 digits fail.

options yearcutoff=19200;
data a;
date = '28jun00'd;
year = year(date);
put year=;
put date=date7. ;
put date=date9. ;
run;

The LOG shows:

year=19200
date=28JUN00
date=28JUN****

Datastmtchk
In Version 6 there were no restrictions on the use of keywords,
such as, DATA, SET, MERGE as data set names. This is not
necessarily true in Version 8. The following step is allowed in
V6:

data set;
set data;

In Version 8 the DATASTMTCHK option must be reset to
NONE to prevent this step from failing to compile.

Tuning Options
Use tuning options liberally and inappropriately - this is
especially good, as people will assume that these were used for
a purpose, and so will be reluctant to remove or change them.
This can be helpful even if you just set them to their default
values.

MACRO STUFF
Implied Macros
Implied macros have not gone away and can still be useful for
creating interesting macros. Hide the following macro
definition in someone else’s AUTOEXEC.SAS:

options implmac;
%macro data (a, b, c, d, e) / stmt;
%* this macro has nothing in it;
%mend data;

Once this macro has been defined, DATA steps will no longer
be recognized. In the following step, the statement a=2; is
flagged as an error.
data new;
a=2;
run;

Using Quotes
Quote marks are generally not needed in the Macro Language,
however, since DATA step enthusiasts are used to seeing them,
they can be useful. Why is the following %IF always false?

%let city = Scottsdale;
%if &city='Scottsdale' %then %do;

This one is also always false.

%if "&city"='Scottsdale' %then %do;

Since the quotes are part of the text that is compared (unlike in
the DATA step) the first character on the left (") is always
different from the first character on the right (').

IN THE DATA STEP
Changing the BY Values in a Merge
In a DATA step merge consider changing the value of one or
more BY variables through assignment statements or DO loops.
Under some conditions this can produce pleasantly
unpredictable consequences.

Dissimilar BY Variable Attributes in a Merge
In a MERGE the attributes of the BY variable are determined
by the first data table noted in the MERGE statement. If the
attributes of the BY variables in the other data set(s) are
different (especially character variables that are longer), the
correct observations will not necessarily be matched. Although
the following two data sets (A and B) have different values of
the BY variable, the observations are matched and joined
together.

data a;
name='Tom';
ina='yes';
data b;
name='Tommy';
inb='yes';
data ab;
merge a b ;
by name;

The data set AB contains:

Obs name ina inb
 1 Tom yes yes

Creating Unanticipated Variables
When numbered range list notation is used, every variable in

the list that is not already on the PDV will be added (to the end
of the PDV), this includes implied elements of the list. This
can have the advantage of actually adding variables to the PDV.
Consider the following DATA step:

data new;
set old(keep=name yr97 yr99);
mean = mean(of yr97-yr99);

The data set NEW will contain the variable YR98 although it is
never mentioned in the code. For the same reason the
following SET statement will fail if OLD does not contain the
variable YR98.

set old(keep=name yr97-yr99);

Unanticipated Variable Order
Variables are added to the Program Data Vector in the order
that they are encountered during the compilation process.
Assume that the data set OLD contains the variables X1 and
X4. In the following step, the values of SUM1 and SUM2 are
not the same(the LOG shows):

32 data old;
33 x1=1; x4=4; output;
34 run;
35
36 data new;
37 set old;
38 x2=2; x3=3;
39 sum1 = sum(of x1-x3);
40 sum2 = sum(of x1--x3);
41 put sum1= sum2=;
42 run;
sum1=6 sum2=10

Unequal Variable Lists
When concatenating data sets the lists of variables in the
incoming data set do not have to be the same. The
defer=open option changes this behavior. In the following
DATA step only those variables in the data table ONE will be
found in the table BOTH.

data both;
set one two defer=open;
run;

Capitalization
With V8 the capitalization of the variable name is
‘remembered’ from the first time you reference the variable.
You can later reference the variable with any capitalization
scheme, however, the original capitalization is used by SAS
procedures. PROC PRINT attempts to break long names at the
capital letters. Consider the following (note the use of the
LABEL option as a further distraction):

data test;
cAPItalIZedVaRIAble="Hello World";
output;
proc print label noobs;
var CapitaliZedVariable;
run;

The output shows:

cAPItal
IZedVa
RIAble
Hello World

Integrity Constraints
The following integrity constraint appears to check for ages
between 16 and 65, however since the comparison operators are
backward it is impossible to add observations to this data set.

proc sql;
create table test(
age num,
constraint chk1 check (age lt 16),
constraint chk2 check (age gt 65)
);
quit;

Of course if you assign integrity constraints to a data table and
then replace the table in a DATA step the constraints are lost.
This allows you to add data that should NOT be allowable.

Audit Trails
Emphasize in your program the use of audit trails. Then never
actually use them. As with the integrity constraints the audit
trail information will be lost if the data set is modified in the
DATA step. Consider password protecting the separate audit
table while leaving the primary data table unprotected.

Generation Data Tables
Through the use of the GENMAX= option on the DATA
statement, multiple copies of a data set can now be
automatically kept. Setting this option to a large number will
force the system to save many copies of the data set. Of course
you will never use these copies.

Indexing
Indexing data tables has the disadvantage of speeding data
subsetting especially when used in conjunction with the
WHERE statement. However, indexes also take time and effort
to create and maintain. A further advantage is that indexes
must be stored, and they can take a non-trivial amount of space.
Consider indexing all variables in a data table (except of course
those that are used in BY statements or WHERE clauses).

The BUFSIZE Data Set Option
The BUFSIZE option sets the data set page size. Unfortunately
SAS normally chooses a sensible value for the BUFSIZE, but
you can set your own value to great advantage. If you select a
value which DOES NOT QUITE allow two observations per
page, the resulting file will be nearly twice as big as it
otherwise would be.

data big(bufsize=4096);
length test $2048;
retain test ' ';
do i=1 to 100;
output;
end;
run;

Terminology

The use of certain terms used in SI documentation is in the
process of being converted from what has been traditionally
used in the DATA step. Until the transition is complete there
will be opportunities for the Job Security Specialist. When
talking to SQL programmers, always use the terms "Data Set",
"Observation" and "Variable". Conversely, when talking to
traditional SAS programmers, always use the terms "Table",
"Row" and "Column".

SAS Spell Checker
Take advantage of the SAS spell checker. You may have
noticed that SAS corrects some of your spelling mistakes – for
instance if you miss-spell DATA as DAT, SAS will correct you.
The two DATA steps below are equivalent!

Original
DATA new;
SET sashelp.class;
FILE OUTPUT;
IF age>12 THEN DO;
OUTPUT;
PUT _all_;
END;
RUN;

Corrected Alternative
DATE new;
SE sashelp.class;
FILO OUTPUT;
FI age>12 THE DOO;
OUTP;
PU _all_;
EN;
RUNE;

By the way, you can now happily discuss your “DATE” steps,
and your “FI THE DOO” statements!

As an aside you can use this technique to beat the enhanced
editor with valid code which looks invalid.

We will leave it to the gentle reader’s imagination as to what
will happen if new definitions are added to the spell checker’s
dictionary.

USING ODS
Templates and Styles
ODS output depends to a very great extent on both
TEMPLATES and STYLEs. These have default definitions
provided with the SAS System. Fortunately you have the
ability to modify or replace them with your own. Hide your
modified versions (with the original name) in a concatenated
library for greatest effect. Suggested modifications to
templates include the removal of selected columns (such as
probability levels) from the output in traditional procedures.
Modified styles allow you to change colors and fonts. This
would include specifying the same color for the background and
foreground.

Output Routing
By default the output goes to the output window (although this
behavior can be changed through the DMS options).
Additionally what is to be routed and to where is to be routed,
can be controlled through the judicious use of ODS statements.

Consider the following statement for inclusion in the
AUTOEXEC.SAS:

ods listing close;

The user will now receive no output/listings in the output
window. If the user is not explicitly using ODS, they may not
think to try turning the ODS LISTING back on.

OUTSIDE THE JOB
Mixing Data Types
Always put V6 and V8 tables and catalogs together in the same
library. The default engines for both V6 and V8 will allow you
to 'see' only one type of data set. Mixing data set types from
different versions in one directory (sorry this won't work on the
mainframe) will render one of the types of data invisible to
SAS. This is a great way to hide V6 catalogues and tables!
When the following LIBNAME statement is issued from within
a Version 8 session, any Version 6 data sets in the \mystuff
directory will not be recognized, but only when V8 data sets
are also present.

libname alldata 'c:\mystuff';

If you then continue to use both V6 and V8 to update your
tables and catalogs, you will find that changes made with V6
are not reflected in the V8 tables and visa versa. Soon you can
have two data sets with the same name, in the same directory,
with very different data values.

Use the Autoexec Option
The -AUTOEXEC option can be used at session initialization
to execute a file of specialty options and techniques especially
tailored for the job security specialist. By default the SAS will
look for a file called AUTOEXEC.SAS, but of course the
connoisseur will be able to pick a better name. Remember that
although the file must contain SAS code the extension does not
need to be SAS. Consider the following:

-autoexec 'c:\pictures\toesurgery.jpg'

Enhanced Editor Colors
The Enhanced Editor has the irritating habit of alerting users to
the presence of comments and quoted strings that extend past
their usual or expected boundaries. This limits the scope of a
number of Job Security techniques. Fortunately you can fight
back. The color of a variety of kinds of statements can be set
independently of each other. Consider changing the color of
comments or quoted strings to the same color as assignment
statements. Or better yet change the color of comments to the
background color of the editor (usually white). Now just for
fun type a few random asterisks.

USING PROCEDURE OPTIONS
NODUPLICATES
The NODUPLICATES option in PROC SORT usually
eliminates duplicate observations. Since most users will
assume 'always' when the truth is closer to 'usually' there is
room to construct a 'technique'. For the data set NAMES,
shown here, the PROC SORT will find no duplicate
observations when sorting by NAME..

NAME AGE
Albert 15
Albert 25
Albert 15
proc sort data=names noduplicates;
by name;

Duplicates remain undetected when they are not adjacent after
sorting. The V8 system option SORTDUP= should be set to its
default (PHYSICAL), which mimics V6 behavior and
maximizes the potential for errors such as the one shown
above. When SORTDUP= is set to LOGICAL, observations
are checked after applying any KEEP= or DROP= data set
options, thus making duplicates easier to detect.

Multilabel Formats
Some procedures such as FORMAT and TABULATE now
support multilabel formats. These formats allow overlapping
ranges when providing grouping information. In the following
table the sales values are grouped by a multilabel format with
overlapping ranges. This causes the overall count (TOTAL) to
appear to be incorrect. In fact the overall count is indeed 10,
but the user will have no clue as to how to distribute those 10
values.

| | count |
|-----------------+------------|
sales	

High	5.00
-----------------+------------	
Low	4.00
-----------------+------------	
Moderate	5.00
-----------------+------------	
Total	10.00

The above table was generated by using the following program
steps.

proc format;
value salesgrp (multilabel)
0-3 = 'Low'
2-6 = 'Moderate'
5-9 = 'High';
proc tabulate data=a;
class sales / mlf;
table sales all='Total',n='count';
format sales salesgrp.;

Formats that Misdirect
Formats are commonly used to change the way which a value is
displayed without changing the value itself. The following
format definition will cause SAS to display ‘FEMALE’
whenever the formatted variable takes on the value of ‘m’.

proc format;
value $sxvalue 'm'='Female' 'f'='Male';

Even more useful might be a format that reverses or changes
the values of the variable.

proc format;
value $gender 'male' ='female'
 'female'='male';

Formats and ODS
When working with ODS, formats can be used with a number
of procedures, such as TABULATE and REPORT, to create
what is known as traffic lighting. Formats can be used to
change the color of the background, color of the foreground, the
font, and so on. This can be used in several ways. An unsubtle
approach would be to turn the background color red for low
values, when the TITLE specifies that high values have a red
background. An alternative would be to change both the
foreground and the background to the same color, thus
rendering the text invisible. This is done for values over 200 in
the following formats:

proc format;
value ampback
low-<0 = 'red'
0-<200 = 'yellow'
200-high= 'white';
value ampfore
low-<0 = 'white'
0-<200 = 'blue'
200-high= 'white';
run;

These formats are then used with the STYLE= option in either
a TABULATE or REPORT. The following shows a TABLE
statement in a TABULATE step.

table product*ampida,
(n*f=3.0 min median max)*
{style={background=ampback
foreground=ampfore.}};

SUMMARY
Things go wrong when programming. In actuality we need to
do all we can just to NOT make the kinds of errors and
mistakes advocated in this paper. Knowing that they exist
provides us with knowledge that will help us avoid
programming traps and pitfalls. Besides your job security is
enhanced automatically if you can decode and understand
programs written by another competing Job Security Specialist.

REFERENCES
Additional information on Job Security techniques can be found
in:

Carpenter, Arthur L., Programming for Job Security: Tips and
Techniques to Maximize Your Indispensability, presented at
the 18th SAS User's Group International, SUGI, meetings (May
1993) and published in the Proceedings of the Eighteenth
Annual SUGI Conference, 1993.

Carpenter, Arthur L. and Tony Payne, Programming For Job
Security Revisited: Even More Tips and Techniques to
Maximize Your Indispensability, Presented at the 23rd SAS
User's Group International, SUGI, meetings (March, 1998) and
published in the Proceedings of the Twenty-Third Annual SUGI
Conference, 1998.

Both papers have been presented at numerous other
conferences and can be found in their respective proceedings.
Contact the authors for more details.

ABOUT THE AUTHORS
Art Carpenter’s publications list includes three books
(Annotate: Simply the Basics, Quick Results with SAS/GRAPH®
Software, and Carpenter's Complete Guide to the SAS®

 Macro
Language), two chapters in Reporting from the Field, and over
four dozen papers and posters. Art has been using SAS since
1976 and has served in a variety of positions in user groups at
the local, regional, and national level.

Art is a SAS Alliance Quality PartnerTM and SAS Certified
ProfessionalTM. Through California Occidental Consultants he
teaches SAS courses and provides contract SAS programming
support nationwide.

Tony Payne has worked as a SAS developer,
project manager and course instructor for
Software Product Services (now SPSInfoQuest)
since 1986. His main area of
specialization is in applications development.
Tony has written six papers presented at SEUGI and other
conferences. Unlike Art he is yet to
write a book or chair a conference. Tony is also a SAS
Certified ProfessionalTM, and SPSInfoQuest is a Quality
Partner of SAS Institute, UK.

ACKNOWLEDGMENTS
The authors would like to express their appreciation to Adam
Crisp of SPSInfoQuest and FiTheDoo of Wimbledon for the
generous contribution of a number of tested techniques, and to
numerous other contributors who had the good sense to remain
anonymous.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
P.O. Box 586199
Oceanside, CA 92058-6199
(760) 945-0613
art@caloxy.com
www.caloxy.com

Tony Payne
SPSInfoquest
The Mill, AbbeyMill Business Park
Eashing, Godalming,
Surrey , GU7 2QJ UK
+44 (0)1483 18422
tpayne@spsweb.com
www.spsweb.com

TRADEMARK INFORMATION
SAS, SAS OnLine Doc, Alliance Partner, and SAS Certified
Professional are all registered trademarks of SAS Institute, Inc.
in the United States and other countries.
® indicates USA registration.

