
P17-27

Building and Using Macro Libraries

Arthur L. Carpenter, California Occidental Consultants

ABSTRACT

While many users take advantage of the SAS®

Macro Language, few take full advantage of its
capabilities to build and maintain libraries of
macros. Management of large numbers of
macros can be problematic. Names and
locations must be remembered, changes must be
managed, duplication and variations of individual
macros must be monitored, and efficiency issues
must be taken into consideration. These
problems come even more to the forefront when
macros are shared among programmers -
especially in a networked environment.

Macro libraries allow you to control and manage
the proliferation of your macros. Libraries can
consist of a formal use of the %INCLUDE
statement, a group of programs defining macros
that can be automatically called, or even
collections of macros that were previously
compiled and then stored.

Macro libraries are extremely useful, and not
really all that complicated. If you are not
currently using them as part of your macro
programming efforts, read on!

KEYWORDS

%INCLUDE, autocall, libraries, compiled
macros, SASMACR catalog, SASAUTOS,
SASMSTORE

INTRODUCTION

The use of macros is essential to an automated
and flexible system. This implies that the control
of the macro code is very important to the

maintenance of the application. All to often
macro definitions become buried within the
programs that use them. The result is often a
proliferation of multiple versions of similar
macros in multiple programs, each with its own
definition of the macro. Parallel code, two
programs or macros that do essentially the same
thing, is an especially difficult problem in large
applications that are maintained by multiple
programmers. Even when there is only one
programmer, there is a tendency to clone a
program ("with slight modifications"). Will each
version be updated each time a bug is found?
Who makes sure that the update happens? Are
the various versions of the macro documented?
These problems are avoided by placing the
definition in a macro library.

Macro libraries are used to avoid the problem of
macro cloning by providing a single location for
all macro definitions. Rather than cloning the
macro, it is adapted (generalized) to fit each of
its calling programs and then stored in one of the
libraries. Once in a library, there will only ONE
macro definition to maintain, and it can be used
by as many programs as is needed. Obviously
this requires documentation as well as diligence.
Part of the solution is to place ALL macro
definitions in a common library, which is
accessible to all programs in the application.
This way no macro definition will be 'buried'
within a program.

There are three types of macro libraries;
%INCLUDE, Compiled Stored Macros,
AUTOCALL Macros. Each has its advantages
and disadvantages, and best of all they can be
used in conjunction with each other!

It is important to understand the behavior of
these libraries, how they are setup, and how they

interact with each other.

%INCLUDE

The least sophisticated approach to setting up a
macro library is obtained through the use of
%INCLUDE files which store macro definitions.
This was often the only viable type of library in
earlier (pre V6) versions of SAS, and not a few
SAS programmers have failed to make the
transition to true macro libraries.

Strictly speaking the use of the %INCLUDE
does not actually set up a macro library. The
%INCLUDE statement points to a file and when
the statement is executed, the indicated file (be it
a full program, macro definition, or a statement
fragment) is inserted into the calling program at
the location of the call. When using the
%INCLUDE to build a macro library, the
included file will usually contain one or more
macro definitions.

Although you can identify the file to be included
directly from within the %INCLUDE statement,
it is usually done indirectly through the use of a
fileref.

filename macdef1
‘c:\mymacros\macdef1.sas’;

........
%include macdef1;
........
%macdef
........

One way to build a library or collection of files
that are to be ‘included’, is to place them in one
central location. This way they will be easier to
find and maintain. Some users of include
libraries will indicate that these file are to be
‘included’, and therefore might not be complete
programs, by using an extension of INC instead
of SAS. While using an extension of INC in no
way hampers the file’s use by SAS, windows
users should be aware that the file will not be
marked by a SAS registered icon.

As was mentioned above the included file can

contain any snippet of SAS code. Within the
context of this paper however, we are interested
in building macro libraries and to do this the
included file would contain a macro definition
e.g. %MACRO and %MEND statements. There
are a couple of efficiency issues that the user of
include libraries should remember.

Generally a given file should not contain more
than one macro definition, and the macro being
called should not be called from within the
included code. The first is important because if
the file contains multiple macro definitions, then
all the definitions must be loaded, and compiled,
just to use one of the macros. Of course if all
the macros will eventually be used this does not
really matter. Secondly if the macro call is
placed within the included code, the code will
need to be re-included (and the macro
recompiled) each time the macro is to be used.

The greatest disadvantage of using the
%INCLUDE in a large application is tracking
and maintaining the filerefs that point to the
individual files. While this is less of a problem in
static systems, it is still non-trivial. This issue
virtually goes away with the use of the other
macro library alternatives discussed below.

COMPILED STORED MACROS

Macros are always compiled before they are
executed and it is possible to store the compiled
code for future use. Compiled macros are stored
in a catalog named SASMACR, and by default
this catalog is stored in the WORK library. Each
compiled macro is stored with the entry type of
MACRO and with an entry name corresponding
to the name of the macro. When a macro is
called, SAS automatically searches this catalog
for the compiled version of the macro that was
called. Permanently compiled stored macros are
also written to a SASMACR catalog, but this
catalog is stored in a different (permanent)
library.

The ability to store and make use of compiled

stored macros is by default turned off. The user
turns on the abilty to make use of compiled
stored macros with the system option
MSTORED (NOMSTORED turns it off). The
library that is to be used to store the permanent
SASMACR catalog is specified by using the
SASMSTORE= option.

The following OPTIONS statement turns on the
use of compiled stored macros and designates
the PROJSTOR libref as the catalog location.

options mstored sasmstore=projstor;

Unlike the AUTOCALL libraries discussed next,
you cannot use more than one location reference
with the SASMSTORE option, therefore, if you
do want to search multiple catalogs, you need to
use either a concatenated libref or a
concatenated catalog.

The following designates the two librefs
PROJSTOR and ALLMSTOR as the locations
that are to be searched for the compiled stored
macro catalog by concatenating the two
locations into a single libref. If the compiled
macro is in more than one catalog, the definition
found first will be used (read left to right).

libname projstor 'c:\temp';
libname allmstor 'f:\junk';
libname multi (projstor, allmstor);

options mstored sasmstore=multi;

By default the compiled macro is stored in
WORK.SASMACR. You redirect this location
at compile time through the use of the /STORE
option on the %MACRO statement. For the
SASMSTORE definition above, the macro
AERPT shown below, will be stored in the
PROJSTOR.SASMACR catalog.

%macro aerpt(dsn, stdate, aelist) / store;

The use of compiled stored macros is not
without problems. The developer must make
sure that a macro does not exist in more than
one catalog or if it does (on purpose, of course)
that the search order of the catalogs is correct.

Also, since it is not possible to reconstruct the
code used to create the compiled macro, the
developer must make sure that the code is
correctly maintained independently from the
SASMACR catalog.

This highlights a second problem for these
libraries. The compiled macros are all in one
location, the SASMACR catalog, however the
code itself could be anywhere. Usually
developers that use compiled stored macro
libraries will also have a central location to store
the source code. A logical location is in the
same directory as the SASMACR catalog.

AUTOCALL FACILITY

When a requested macro is not found in a
SASMACR catalog, the AUTOCALL library is
searched. Much like an %INCLUDE file, this
library contains the macro definitions in the form
of SAS code. When a macro is called, SAS
searches for a file with the SAME name as the
name of the macro in the specified AUTOCALL
location. The code in the corresponding file is
then submitted for processing. Since this file
contains the macro definition, the macro is then
compiled and made available for execution.
Under Windows this location is a folder and
each macro definition is an individual file. Under
MVS a PDS is used with each member
corresponding to a macro.

By default the ability to make use of the
AUTOCALL facility is turned on. The
following code makes sure that the autocall
facility is available (MAUTOSOURCE) and
specifies the FILEREFs of the locations
(SASAUTOS=) that contain the SAS programs
with the macro definitions.

options mautosource
sasautos=(projauto allauto);

Although the documentation is not entirely clear
on the subject (or sometimes even incorrect, see
Carpenter’s Complete Guide to the SAS® Macro

Language), be sure that you use filerefs, NOT
librefs, to specify the locations of the autocall
programs (Burlew, 1998, correctly specifies the
locations with the FILENAME statement). You
can also replace the fileref in the SASAUTOS=
option with a direct reference, however this
approach is less flexible and is not as ‘clean’.

MACRO SEARCH ORDER

As these libraries of macros are established it is
important for both the developer and the user to
understand the relationship between them. One
of the more important aspects of this relationship
is the order of locations that SAS searches for a
macro once it is called.

When a macro is called, the macro facility must
first find the macro definition before it can be
inserted for execution. Since the macro
definition can be located in any of several
locations, the developer needs to control the
search. The search for the macro definition uses
the following order.

1) WORK.SASMACRO
2) Compiled Stored Macros
3) Autocall Macros

The first time that a macro from the Autocall
library is called it will not be found in any of the
catalogs of compiled macros, but once called it
will be compiled and the compiled code stored
(in WORD.SASMACR unless otherwise
specified). On successive calls to that macro its
compiled code definition will be found and the
search will not extend to the Autocall library a
second time. This process minimizes the
compilation of the macro.

This is a major advantage over the use of the
%INCLUDE as a macro library. When a macro
definition is brought into the program through
the %INCLUDE, it will be compiled for each
%INCLUDE. Of course if the programmer is
careful, this is not such a bad thing. If the
%INCLUDE appears only once, the macro will

be compiled at that time and added to the
WORK.SASMACR catalog and the compiled
macro definition will be used from then on (as
long as it is not included another time).

MACRO LIBRARY STRUCTURE

Placing your macros in a library will help to
organize you programs. However in larger
groups, projects, or in organizations with
multiple programmers sharing macros, it
becomes necessary to organize the libraries
themselves. In the designations of the locations
of both the Autocall library (SASAUTOS=) and
the compiled stored macros (SASMSTORE=)
shown above there are two locations. By
specifying multiple locations for the libraries it
becomes possible to organize them into
collections of macros. Typically for the work
that I do, I like to arrange the collections
according to how the macros are to be used.
Macros that are specific to a task or project will
be placed in the location that will be searched
first. Then the macros that are more generalized
or are useful to multiple projects are placed in a
location that will be available to users of all
projects. This arrangement allows the developer
to create general tools that are available to
everyone as well as specific macros that apply to
only one project or task.

MACRO LIBRARY STRATEGY

The question is then not IF to set up a library,
but which macro library setup to use.

The %INCLUDE library and the AUTOCALL
library can be set up to in a very similar fashion.
The primary advantage of the AUTOCALL
library is that the developer does not need to
manage or work with the individual filerefs, as
these are controlled automatically through the
SASAUTOS= system option.

Unless a macro is unusually large or complex, it

generally takes very little time to locate and
compile a macro stored in the AUTOCALL
library. This suggests that there is not a
substantial time savings in using the compiled
stored macro library. Since both libraries require
the developer to store and maintain the source
code, there does not seem to be a compelling
reason to adopt one library type over the other.
For this reason and because everyone already
uses the AUTOCALL facility anyway to get to
the SAS supplied autocall macros, the
AUTOCALL library seems to be used much
more frequently than the compiled stored macros
library.

One strategy that has worked well in limited
situations, combines these two types of libraries.
This combined library approach specifies an
autocall library (SASAUTOS=). It also turns
on the compiled stored macro library
(MSTORED) and then points the location
(SASMSTORE=) to the SAME location as the
autocall library. Since the SASAUTOS= fileref
and the SASMSTORE= libref both point to the
same directory, the SASMACR catalog will
reside in the same location as the source code
that defines the macro. Once this is done all the
macros in the autocall directory will ALSO have
the /STORE option. Now we have the best of
both worlds. One source program and a
compiled macro all stored in one easy to find
location.

INTERACTIVE MACRO
DEVELOPMENT

When developing macros in the interactive
environment, special care must be taken to make
sure that the correct macro definitions are
compiled and stored. If the developer is not
careful it is possible to call a macro without
using the latest update to the macro definition.
This is not a good thing.

As was discussed earlier, after a macro definition
is submitted, the compiled code is stored in the

appropriate SASMACR catalog. This catalog
will be in the WORK library unless compiled
stored macros are being used and the /STORE
option is present on the %MACRO statement.
When the macro is then later called, SAS looks
for the macro definition in one or more of these
catalogs and only if the definition is NOT found
is the AUTOCALL library searched.

Suppose the developer is debugging a macro
whose definition resides in the AUTOCALL
library. She calls the macro for execution, but is
not satisfied with the results. If she edits the
program, saves it back into the AUTOCALL
library, and then re-executes it, the results will be
the same! Her changes will be ignored! Her
changes are not implemented because the macro
has not been recompiled! She has updated the
code, but because the macro has already been
compiled and resides in the SASMACR catalog,
SAS will never look for the new definition in the
AUTOCALL library. She needs to do one of
two things after making the change in the macro
definition. She can:
1) submit the macro definition (%MACRO to
%MEND), this places the latest definition in the
SASMACR catalog.
2) delete the compiled macro entry from the
appropriate SASMACR catalog. The next
execution of the macro will cause SAS to seek
out the AUTOCALL definition, which will then
be compiled and re-stored in the SASMACR
catalog.

When your SAS environment includes macro
libraries, you must remember that as you edit
your macro definitions, you must also update the
appropriate SASMACR catalogs as well. It is
not enough to just change the macro definition.

The above example illustrates a situation that is
usually not an issue when using a %INCLUDE
library to hold macro definitions. When the
%INCLUDE brings in a macro definition, the
definition itself is usually inserted directly into
the code, it is then submitted and compiled - all
in the same operation. Although this may
initially sound like an advantage, it actually is not

because the macro must be recompiled each time
the %INCLUDE is executed. This method does
not take full advantage of the ability to save the
compiled macro in the SASMACR catalog.

AUTOCALL MACROS SUPPLIED
BY SAS

SAS has supplied a number of macros with the
SAS System e.g. %LEFT, %LOWCASE, and
%VERIFY. These macros are actually supplied
as macro code, and the code is placed in the
SAS AUTOCALL library. If you want to make
use of these macros, and you do, you must
include this library in your list of locations search
by the autocall facility.

By default the automatic fileref SASAUTOS is
available. An options statement setting the
AUTOCALL options to the defaults would be:

options mautosource sasautos=sasautos;

If you specify locations for AUTOCALL
libraries, you need to make sure that the SAS
AUTOCALL library is also specified. Failure to
do this will make ALL of the SAS autocall
macros unavailable. In the example of the
OPTIONS statement in the AUTOCALL section
of this paper, the SASAUTOS fileref is NOT
included and the autocall macros provided with
SAS will NOT be available. The OPTIONS
statement should be rewritten as:

options mautosource
sasautos=(projauto allauto

sasautos);

Notice that the SASAUTOS fileref is listed last.
This allows the user to create macros that will
override the default definitions of the macros
supplied with SAS.

SUMMARY

Macro libraries allow the macro developer to
store, maintain, and manage large numbers of
macros. The two types of macro libraries
(AUTOCALL and Compiled Stored Macros),
were introduced in V6. These libraries allow the
user to avoid the use of the %INCLUDE
statement to bring in macro definitions, while
efficiently accessing and utilizing the power of
the macro.

Using macro libraries is not difficult nor is it
overly complicated. Both styles of libraries are
established through the use of the OPTIONS
statement, although the AUTOCALL macro
facility is available by default.

Macro libraries foster an environment that
promotes good macro programming practices by
making it easier to avoid the use of duplicate
macro definitions. As a result of using these
libraries you will find that it is easier to track and
maintain your macros, and macro programming
will become even more fun.

ABOUT THE AUTHOR

Art Carpenter’s publications list includes three
books Quick Results with SAS/GRAPH®

Software, Annotate: Simply the Basics, and
Carpenter's Complete Guide to the SAS® Macro
Language, and numerous papers and posters
presented at SUGI, PharmaSUG, NESUG, and
WUSS. Art has been using SAS since 1976 and
has served in various leadership positions in
local, regional, and national user groups.

Art is a SAS Certified ProfessionalTM, and
through California Occidental Consultants he
teaches SAS courses and provides contract SAS
programming support nationwide.

AUTHOR CONTACT

Arthur L. Carpenter
California Occidental Consultants
P.O. Box 586199
Oceanside, CA 92058-6199

(760) 945-0613
art@caloxy.com
www.caloxy.com

REFERENCES

Burlew, Michele M. 1998, SAS® Macro
Programming Made Easy, Cary, NC: SAS
Institute, Inc., 280pp.

Carpenter, Arthur L., 1998, Carpenter's
Complete Guide to the SAS® Macro Language,
Cary, NC: SAS Institute, Inc., 242pp.

TRADEMARK INFORMATION

SAS and SAS Certified Professional are
registered trademarks of SAS Institute, Inc. in
the USA and other countries.
® indicates USA registration.

