
1

Paper 255-30

Looking for a Date?
A Tutorial on Using SAS® Dates and Times

Arthur L. Carpenter
California Occidental Consultants

ABSTRACT

What are SAS date and time values? How are they used and why do we care? What are some of the more important
of the many functions, formats, and tools that have been developed that work with these crucial elements of the SAS
System?

This tutorial will answer these questions and many more. Starting with date and time constants and their
representation in SAS and then expanding to functions and formats, the basics of the use of dates and times will be
integrated with their use as part of both data tables and data displays. The discussion will include functions and
formats that are new to Version 8 and SAS 9.

Also covered are picture formats and date directives, date scaling in SAS/GRAPH, shift operators in the INTNX and
INTCK functions, and the use of the %SYSFUNC macro function.

KEYWORDS

date, time, format, INTNX, INTCK, date literal, shift operator, alignment options

INTRODUCTION

WHAT ARE SAS DATE AND TIME VALUES?
There are three primary ways of measuring time in the SAS System. These are known as DATE, TIME, and
DATETIME values. Each is a numeric value that measures from an arbitrary starting point by counting the number
of elapsed time units. While somewhat inconvenient for us as SAS programmers to get used to, this is great for the
computer because all interval calculations become simple addition and subtraction operations.

DATE values are stored as the number of days that have elapsed since the start of time (January 1, 1960). TIME
values are the number of seconds that have elapsed since midnight of the current day. When you need a finer scale
than that offered by DATE values, the DATETIME value counts the number of seconds that have elapsed since
midnight of January 1, 1960.

On July 28, 2004 at 11:32 a.m. the SAS DATE value was 16,280 days since January 1, 1960. It was also 41,520
seconds since midnight (the TIME value), and the DATETIME value was 1,406,633,520 seconds since midnight
January 1, 1960.

Obviously numbers like this are difficult for us to work with (unless you have a SAS watch that tells the time in
seconds since midnight) so SAS has created a number of tools for us to use to manipulate and display these values.

WHAT IS A SAS DATE AND TIME LITERAL?
One of the simplest of these tools is are literal strings. These are used when you would like to insert a constant
DATE, TIME, or DATETIME value into a DATA step value. The following DATA step creates three constant
values.

data sampdate;
sampdate = '28jul2004'd;
samptime = '11:32't;

2

sampdate=16280
samptime=41520
sampdtime=1406633520

sampdtime= '28jul2004:11:32'dt;

put sampdate=;
put samptime=;
put sampdtime=;
run;

The LOG shows:

Notice that the literal values are inclosed in quotes and immediately followed by a letter that tells SAS how to
interpret the literal string. Dates must be in ddmonyyyy form, while time values are hh:mm:ss and datetime values
are a combination of the two.

Although the three forms of date/time measurement are each important, they do not receive equal application.
Throughout the remainder of this paper, although a given example will often only deal with only one of the
measurement forms, say DATE, the reader should keep in mind that the discussion will often apply equally to the
other two forms.

DATE AND TIME FUNCTIONS

A number of functions have been created to help us work with DATE, TIME, and DATETIME values. They can be
used to create, modify, convert, and otherwise manipulate these values from one form to another.

CREATING DATE AND TIME VALUES
Sometimes we have date and/or time information that may not be in SAS date/time form. Functions can be used to
establish date/time values. The following data step demonstrates some of the functions that can be used to create
date/time values.

data dtvalues;
day=28;
mon=7;
yr=2004;
hr=11;
min=32;
sec=0;

sampdate = mdy(mon,day,yr);
samptime = hms(hr,min,sec);
sampdtime= dhms(sampdate,hr,min,sec);
current = today();

put sampdate=;
put samptime=;
put sampdtime=;
run;

The TODAY and DATE functions return the current date as stored on the computer's clock.

TAKING DATETIME VALUES APART
If you have a DATETIME value and want to create DATE and TIME values the DATEPART and TIMEPART
functions can be used to convert the number of seconds since the beginning of time to days and seconds since
midnight.

3

data samppart;
sampdtime= '28jul2004:11:32'dt;
sampdate = datepart(sampdtime);
samptime = timepart(sampdtime);

put sampdate=;
put samptime=;
put sampdtime=;
run;

You can also break up both DATE and TIME values using additional functions.

data allapart;
sampdate = '28jul2004'd;
day=day(sampdate);
mon=month(sampdate);
yr =year(sampdate);

samptime= '11:32't;
hr = hour(samptime);
min= minute(samptime);
sec= second(samptime);

put sampdate= ;
put day= mon= yr=;
put samptime=;
put hr= min= sec=;
run;

USING DATE AND TIME VALUES
Once you have created a SAS date it can be easily manipulated by a variety of other SAS functions. The following
DATA step converts a SAS date into some other forms.

data reform;
sampdate = '28jul2004'd;

julian = juldate(sampdate);
julian7= juldate7(sampdate);
quarter= qtr(sampdate);
dayofwk= weekday(sampdate);

put sampdate= ;
put julian=;
put julian7=;
put quarter=;
put dayofwk=;
run;

4

sampdate=16280
julian=4210
julian7=2004210
quarter=3
dayofwk=4

dob=5632
age=29.151860169

The LOG shows:

WORKING WITH INTERVALS
It is not at all unusual to need to work with date/time intervals. Of course the number of elapsed days is a simple
subtraction when dealing with dates, but what about other intervals? One common interval that must be calculated is
age in years. There are several ways to calculate the number of elapsed years, however the newer function YRDIF is
the most accurate. The following calculates my son's age as of July 28, 2004.

data age;
dob = '04jun1975'd;
age = yrdif(dob,'28jul2004'd,'act/act');

put dob=;
put age=;
run;

The LOG shows that he was born 5632 days after the beginning of time and is just over 29 years old (incidently he
was born when I was 5).

The third argument allows the use of alternate month and year definitions that are sometimes used by accountants.
ACT indicates that you want to use the actual number of days per month and per year. This option, however allows
you to use counting intervals were all years have 360 days and all months have 30 days.

The INTNX and INTCK functions are also used to calculate intervals and are not limited to counting the number of
elapsed years. Both use an argument to specify the type of date/time interval of interest. The INTCK function
counts the number of intervals between two dates.

data ageint;
dob = '04jun1975'd;
yrs = intck('year',dob,'28jul2004'd);
months = intck('month',dob,'28jul2004'd);
weeks = intck('week',dob,'28jul2004'd);
qtrs = intck('qtr',dob,'28jul2004'd);

put yrs=;
put months=;
put weeks=;
put qtrs=;
run;

The LOG shows:

5

yrs=29
months=349
weeks=1521
qtrs=117

sampdate=July 28, 2004
start=01JUL2004
stop=07/31/2004

Notice that the calculation for the number of years is different from that generated by YRDIF. This is because the
INTCK and INTNX functions base the interval from the start of the respective intervals. This means that YRS
would have been 29 for any DOB in 1975 as well as for any second date in 2004. This behavior can be modified
using the shift operators and alignment options shown later.

You can also advance a date/time using the INTNX function. This has proved useful for the determination of start
and end points of periods of time. Suppose you need to determine the first and last date for the month that contains
the current sampling date.

data period;
sampdate = '28jul2004'd;
start = intnx('month',sampdate,0);
stop = intnx('month',sampdate,1) - 1;

put sampdate=;
put start= ;
put stop= ;
run;

The third argument of the INTNX function specifies how many intervals to advance the date value. For START we
advance it 0 months and since INTNX always deals with the start of the month, this results in 01jul2004 (for any
date in July). When calculating the value for STOP, the INTNX function advances 1 month (01aug2004) and then
we subtract one day to get the last day in July.

USING FORMATS

DISPLAYING DATE AND TIME VALUES
As has been demonstrated in all of the previous examples, when a date/time value is displayed its raw value (number
of days since the beginning of time) is not very readable. SAS gets around this be supplying a number of formats
and informats that have been specifically tailored for use with date/time values. There are many more of these than
can be shown here and it is crucial that the informed SAS programmer have a working knowledge of the full range
of these formats. The following example adds formats to the PUT statements of the previous example.

data period;
sampdate = '28jul2004'd;
start = intnx('month',sampdate,0);
stop = intnx('month',sampdate,1) - 1;

put sampdate= worddate18.;
put start= date9.;
put stop= mmddyy10.;
run;

The LOG shows:

6

 sampdate=07/28/2004
b sampdate=07 28 2004
c sampdate=07:28:2004
d sampdate=07-28-2004
n sampdate=07282004
p sampdate=07.28.2004
s sampdate=07/28/2004

The formats of the general form of mmddyy, yymmdd, and ddmmyy (one of which was shown in the previous
example allow an extension that gives the programmer the ability to control the character that separates the
month/day/year values.

data extensions;
sampdate = '28jul2004'd;

put ' ' sampdate= mmddyy10.;
put 'b ' sampdate= mmddyyb10.;
put 'c ' sampdate= mmddyyc10.;
put 'd ' sampdate= mmddyyd10.;
put 'n ' sampdate= mmddyyn8.;
put 'p ' sampdate= mmddyyp10.;
put 's ' sampdate= mmddyys10.;
run;

The LOG shows:

When using an extension of 'n' (none) a width of 10 will cause an error.

The "anydate" informats are new with SAS 9. They are designed to allow you to read in a variety of date forms
including:

• DATE, DATETIME, and TIME
• DDMMYY, MMDDYY, and YYMMDD
• JULIAN, MONYY, and YYQ.

These can be especially useful when your incoming data has a mixture of date forms. The various forms of these
informats include:

• ANYDTDTE. extracts the date portion
• ANYDTDTM. extracts the datetime portion
• ANYDTTME. extracts the time portion

options datestyle=mdy;
data new;
input date anydtdte10.;
put date;
format date date9.;
datalines;
01/13/2003
13/01/2003
13jan2003
13jan03
13/01/03
01/02/03
03/02/01
run;

7

13JAN2003
13JAN2003
13JAN2003
13JAN2003
 .
02JAN2003
02MAR2001

sampdate=July
sampdate=Jul

 The LOG shows:

The DATESTYLE= system option is used to help resolve ambiguous dates and can take on values such as MDY
(default), DMY, YMD, etc. Notice that the date in the fifth observation is too ambiguous to resolve and is therefore
set to missing.

You can of course create your own formats and the PICTURE style of format lends itself to work with SAS
date/time values through the use of 'directives'. The ability to use date/time directives in the PICTURE statement is
turned on with the DATATYPE= option. This option takes on the values of DATE, TIME, and DATETIME.

proc format;
picture moname
 other = '%b' (datatype=date);
picture monabb
 other = '%B ' (datatype=date);
run;

data picture;
sampdate = '28jul2004'd;
put sampdate=monname.;
put sampdate=monabb3.;
run;

The LOG shows:

There are over 15 directives and the case of the letters used as directives is important. Some of the available
directives include:

Y year
m month
d day
H hour
M minute
S second
B month abbreviation
b month name

The following format creates a DATETIME string in a form that could be used by DB2.

proc format;
picture dbdate
 other = '%Y-%0m-%0d:%0H:%0M:%0S' (datatype=datetime);
 run;

8

sampdtime=2004-07-28:11:32:00

sampdate=16280 sampdate=28JUL2004

data _null_;
sampdtime= '28jul2004:11:32'dt;
put sampdtime= dbdate.;
run;

The LOG shows:

CREATING A SAS DATE/TIME VALUE USING THE INPUT FUNCTION
Sometimes you will receive a data table that has a date stored as a character string. In addition to using the
ANYDATE informats, which were shown above, there are other informats that can be used with the INPUT function
to create a SAS date/time value.

The trick is to pick the informat that matches the form of the character string. In the following example the string
stored in the character variable CDATE (it's a string - NOT a SAS date) is in the ddmonyyyy form which
corresponds to the DATE9 informat.

data chardate;
cdate = '28jul2004';
sampdate = input(cdate,date9.);

put sampdate= sampdate=date9.;
run;

The LOG shows that the variable SAMPDATE is indeed a SAS date value.

THE %SYSFUNC MACRO LANGUAGE FUNCTION

Most of the functions available in the DATA step are also available in the SAS macro language. You can access
these functions in the macro language as if you were in the DATA step by using the %SYSFUNC macro language
function. This function has two arguments. The first is the DATA step function that is to be executed and the
second an optional format to apply to the result of the function.

RETRIEVING A DATE
The following macro uses %SYSFUNC to call the TODAY function to retrieve the current date (a numeric value)
and then to display it as a formatted character string.

%macro currdate;
%trim(%left(%qsysfunc(date(),worddate18.)))
%mend currdate;

title "Data updated on: %currdate";

CONVERTING A CHARACTER DATE TO A SAS DATE
If you have a date string that you want to convert to a SAS date, the process is similar to what you would use in the
DATA step. The macro variable &SYSDATE9 contains the date the current SAS session was started (28Jul2004).
We want to create a macro variable that contains the SAS date (16,280).

%let numdate = %sysfunc(putn("&sysdate9"d,5.));
%put sysdate is &sysdate9;

9

15 %put sysdate is &sysdate9;
sysdate is 28JUL2004
16 %put numdate is &numdate;
numdate is 16280

sampdate=July 28, 2004
start=01JUL2004
stop=07/31/2004

%put numdate is &numdate;

The LOG shows:

SHIFT OPERATORS AND ALIGNMENT OPTIONS

As was discussed earlier, the INTNX and INTCK functions can be very useful when dealing with date/time
intervals. The examples showed that these functions always specify intervals that are by default measured from the
start of the interval. Also the types of intervals that are available for your use may not be sufficient for your needs.
Shift operators and alignment options add a great deal of flexibility to these functions.

ALIGNMENT OPTIONS FOR INTNX
The alignment options allow the INTNX function to use either the Beginning (the default), Middle, or End of the
interval. The alignment option becomes the optional fourth argument. In an earlier example that calculated the end
of the month we could have instead used the following to determine the value for STOP.

data period;
sampdate = '28jul2004'd;
start = intnx('month',sampdate,0);
stop = intnx('month',sampdate,0,'e');

put sampdate= worddate18.;
put start= date9.;
put stop= mmddyy10.;
run;

The LOG shows:

USING SHIFT OPERATORS
Shift operators extend the number and types of available intervals. The topic is quite complex so consult the
documentation for more details. Basically a suffix is added to the interval name. For the interval YEAR the new
interval could be specified as YEARm.s; where 'm' is the multiplier and 's' is the shift.

Normally when we specify YEAR we want an interval of one year and that year is to start on January 1st. By adding
a multiplier of 2, YEAR2 would specify a two year interval. Adding a shift of 3 would specify an interval start of
March rather than January. Taken together YEAR2.3 would specify a two year interval with 01March as an interval
start. For groups with a fiscal year starting in October the interval becomes YEAR.10 .

data period;
sampdate = '28jul2004'd;
yrstart = intnx('year',sampdate,1);
yrstart2 = intnx('year2',sampdate,1);
yrstart23 = intnx('year2.3',sampdate,1);

put sampdate= worddate18.;

10

sampdate=July 28, 2004
yrstart=01JAN2005
yrstart2=01JAN2006
yrstart23=01MAR2006

put yrstart= date9.;
put yrstart2= date9.;
put yrstart23= date9.;
run;

The LOG shows:

USING DATES IN SAS/GRAPH

When producing plots and charts it is common to use date/time values on one or both of the axes. Since SAS dates
are numeric, graphing dates without taking their nature into consideration often results in an unsatisfactory graph.

The following graphs each plot the weight of patients against their date of birth (a SAS date ranging from the years
1915 to 1970). In the first plot the Date of Birth is plotted as it is in the data.

proc gplot data=clinics;
plot wt*dob;
title 'Unformatted Dates of Birth';
run;

Here you can see that the date of birth (DOB) ranges
from -17,000 to 3,000. The axis values are of course
worthless to anyone without a pocket calender of SAS
dates.

We do not want to change the values in the data since
they are SAS dates, but we can easily change how
they are to be displayed by using an appropriate date
format.

11

By assigning a date format to the DOB variable the horizontal axis becomes much easier to read.

proc gplot data=clinics;
plot wt*dob;
title 'Formatted Dates of Birth';
format dob date9.;
run;

In this case SAS/GRAPH has not only recognized that
these are date values, but has made an attempt to create
major tick marks at appropriate date boundaries. In this
case every 20 years on the first of January. It does not
always make such a successful selection of intervals, and
consequently we often need a bit more control.

The selection of the major tick marks can be done
manually or automatically with direction from the
programmer. The tick marks intervals can also be
selected by using the same intervals designations that are
accepted by the INTCK and INTNX functions. This includes the use of shift operators.

In the following example, plotting by decade is accomplished by using the HAXIS= option on the PLOT statement.

proc gplot data=clinics;
plot wt*dob/haxis='01jan1910'd to '01jan1970'd by year10;
title 'Using HAXIS=';
format dob date9.;
run;

Although the major tick marks have been selected as we
requested, the axis labels are not as nice as we would
have liked. Fortunately the same interval designations
that we used with the HAXIS= option are also available
with ORDER= option in the AXIS statement.

12

In the next example, the AXIS statement is defined with the ORDER= option to specify the same intervals. The
VALUE= option is used to slant the tick mark labels by 55 degrees.

axis1 order=('01jan1910'd to '01jan1970'd by year10)
 value=(a=55 r=0);
proc gplot data=clinics;
plot wt*dob/haxis=axis1;
title 'Using an AXIS Statement';
format dob date9.;
run;

Although not used in this example we could have also
shifted the tick marks to measure from March by using
YEAR10.3 .

SYSTEM OPTIONS

In addition to the DATESTYLE= SAS9 system option used with the ANYDTE informats which was mentioned in a
previous example, there are a couple of other system options that deal with dates.

The DATE system option turns on or off (NODATE) the printing of the date in the upper right corner of the output
page. The date printed is the value of the &SYSDATE macro variable, which is assigned its value when the current
SAS session is initialized.

The YEARCUTOFF system option was added to provide a methodology for handling two digit years. If we specify
the date literal '28jul04'd, we could intend either 2004, 1904, or even 1704. The YEARCUTOFF option is used to
eliminate this ambiguity. SAS uses the value of the YEARCUTOFF option to determine a 100 year interval into
which all two digit years are to fall. Under Version 7 and later the default value for YEARCUTOFF is 1920 (it was
1900 in V6). This means that if you ever use a two digit year, its appropriate 4 digit year value will be selected from
the 100 year period starting with 1920.

The best strategy, when you can take advantage of it, is to never specify two digit years. Use formats such as
DATE9. in preference to DATE7. to show all four digits.

SUMMARY

SAS offers a wide array of tools to aid us as we work with date, time, and datetime values. These tools include a
wealth of functions, formats and options, and they can be used in a variety of ways within the SAS System.

Each of the examples in this paper have just scratched the surface of the available capabilities. There is much more.
Explore.

Most data tables are going to have a time component. Be sure that you can take advantage of the power of SAS to
manipulate and display these values.

Know the functions. Know the formats. Know the options. Be sure that you are able to get a date when you need
one!

ABOUT THE AUTHOR

13

Art Carpenter’s publications list includes three books, and numerous papers and posters presented at SUGI and other
user group conferences. Art has been using SAS® since 1976 and has served in various leadership positions in local,
regional, national, and international user groups. He is a SAS Certified ProfessionalTM and through California
Occidental Consultants he teaches SAS courses and provides contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
P.O. Box 430
Oceanside, CA 92085-0430

(760) 945-0613
art@caloxy.com
www.caloxy.com

REFERENCES
Carpenter, Art, Carpenter's Complete Guide to the SAS® Macro Language 2nd Edition, Cary, NC: SAS Institute Inc.,
2004.

Karp, Andrew, 2004, "Time Series Magic: Using PROC EXPAND with Time Series Data", presented at the 12th

Annual WUSS conference and published in its proceedings.

Karp, Andrew , 2000, "Working With SAS Date and Time Functions," NorthEast SAS Users Group 13th Annual
Conference Proceedings, 197-203. Also presented at the 12th Annual WUSS conference and published in its
proceedings (2004).

Rhoades, Mike, 2003, "Starts and Stops: Processing Episode Data With Beginning and Ending
Dates" SUGI 29 Conference Proceedings, paper #260-29.

TRADEMARK INFORMATION
SAS and SAS Certified Professional are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.

