Paper 113-2007

List Processing Basics: Creating and Using Lists of Macro Variables
Ronald J. Fehd, Centers for Disease Control and Prevention, Atlanta, GA, USA
Art Carpenter, CA Occidental Consultants, Vista, CA, USA

ABSTRACT List Processing or dynamic programming Contents

techniques free up your programming [Preparing a Foufing| 9
time by eliminating hard coded parame-
ter values. List values can be obtained di- [Making Lists] 3
rectly from information you already have, Using List§
and there is more than one way to do it! s%%k;‘::d Tierate a Macro Array] g
Commonly the list is stored as series of Make an n a Macro Variablel 6
macro variables or as a macro variable rite Call Macro Variablel 8
with a series of values or even as values o 18
in a data set.
This paper compares and contrasts the ”"s‘,[,";gré’sted Reading| }g
basic methods of treating variable val- Bibliography| 13
ues as parameters and placing them into Appendix 15
repetitive code. Project Files for Batch Processing] 15

Audience: intermediate users. Eé?m-” te Tlos Tor Moreshop| - .- - - - - - 1e

utions to Examples| 20

Keywords: call execute, call symput, dynamic pro-
gramming, into:, list processing, self-
modifying

INTRODUCTION

One of the greatest strengths of the SAS® macro language is its ability to build and execute repetitive code. The
level of repetition that encourages conversion to a macro depends on the tolerance of the programmer. For Ron
and Art a program with a repetition of more than two items is a candidate for conversion.

As we write more sophisticated macros we want to have the macro $macro DoLoop;

determine as much of the information that it needs as possible. Ina %do I = $to 5;

simple case consider the macro %do loop: S* ...

This loop has a hard coded number of repetitions (5). We can gener- $macro DoLoop (Count) ;

alize by passing the number of repetitions as a parameter: $do I = $to &Count;
%0

In a dynamic coding solution the macro will include code so that the $macro DoLoop;

number of repetitions can be determined by the macro itself. %$*... code determines Count;
$do I = $to &Count;

The final solution is one kind of dynamic process, and in the following sections of this paper we will present several

different approaches and techniques that are commonly used to solve dynamic coding problems.

In a dynamic programming situation it is very often desirable to process one or more operations for a series of items.
The items themselves may be data sets, variables in a data set, (columns in a table), or values of a column within a
table.

The hallmark of dynamic programming techniques is that the program itself will determine what the list is, build it,

and then use it. In a dynamic program all this is done without programmer intervention.

Consider the following simple Proc Report-Africa.sas
Report step which routes the output to ods html file = "gpath.Africa.html"
an html file. style = journal;

Title "Sales in Africa";

PROC Report data = sashelp.Shoes

See Ex01.] :
nowindows;
where region = 'Africa’;
column product subsidiary, sales;
10 define product / group;
11 define subsidiary / across;
12 define sales / analysis '’;

13 run;
14 ods html close;

If we want a similar report for each region we cannot simply use a by statement in the PROC step because we want
the Title and the html filename to contain the name of the region. Hard coding the value of one region while
testing is no problem, for two it is irritating, for three it is time to find a better solution. We need a dynamic solution
that can determine the number of regions, the values of each, and then execute this step for each one.

In the following sections we examine this problem from several angles e prepare routine
and we show several different techniques that can be used to build the . .
ability to provide the needed repetition. — identify program parameter(s)

The examples show the concepts of testing the routine as it is being = convert program to routine

developed. e make list of parameter values

e iterate with each value: call routine

PREPARING A ROUTINE
IDENTIFY PROGRAM PARAMETERS

Our report has three occurences of the string Africa. This is the first

value of the variable Region in the data set sashelp.Shoes. LN I file = ’'Africa.html’

2 Title ’'Sales in Africa’;
See Ex01.) 3 where Region = ’'Africa’;

CONVERT TO ROUTINE

The first step in converting our program to a routine is to keep the

program running by making it into a parameterized include file. Add + |%Let Region=Africa;
one macro variable for each parameter and replace the occurences of 2 |- -- file = "&Region..html"
each parameter value with the macro variable. s |Title "Sales in &Region.";

4 where Region = "&Region.";

Find and replace the three occurences of the string Africa with the
macro variable reference &Region.. Note that the prefix to the macro
variable reference is the special character ampersand (&) and the suf-
fix is the character dot (.). In the filename-extension the first dot ends
the macro variable reference and the second dot separates the file-
name and the extension.

28
29
30
31

CONVERT TO MACRO

Finally change the allocation of the macro variable

from $Let t0 $macro parameter.

The next task is to identify the list of pa-
rameter values and decide how best to
generate the macro calls shown here in
the test section at the bottom of the pro-
gram.

Note lines 5-9: Since one value con-
tains a slash (/) we create a new
variable Filename and change the
slash to a hyphen to avoid an oper-
ating system clash of folder Central
America/Caribbean not existing.

Task: How to generate these macro calls?
Report-Region-macro.sas
%$Report (Region = Africa);

%Report (Region = Asia);

%Report (Region

= Central America/Caribbean) ;

See Ex00

To speed up our we write a very
simple test macro which only lists its pa-

rameter values.

MAKING LISTS
WHAT IS A LIST?

In conversation we use the word list to mean any collection of items,

1 $macro Report (Region=Africa);

2 ce file = "&Region..html"
3 Title "Sales in &Region.";
4 where Region = "&Region.";

Report—-Region-macro.sas

%$Macro Report (InData = sashelp.Shoes
,Region
,OutPath = /*here: same folder*/

)
%$local Filename; %Let Filename = &Region.;
%$** change slash to hypen in
Central America/Caribbean;
$If %index (&Region, /) %$then %$Let Filename =
$sysfunc (translate (&Region.,—,/));

ods html file = "&OutPath.&Filename..html"
style = journal;
Title "Sales in &Region.";
PROC Report data = &InData.
nowindows;

where Region = "&Region.";
column Product Subsidiary,
define Product / group;
define Subsidiary / across;
define Sales / analysis ’';

Sales;

run;
ods html close;

run; %Smend Report;

ReportTest.sas

%$Macro ReportTest (Region =);
$put _local_;

run; %Mend;

Definition of List

however they may be related. An example would be a todo or shop-

ping list. The items in the list share a common property: tasks to be
done, items to purchase. In a formal language, such as set theory, 2

1. natural language: list contains items

. formal language: an unordered set

a list is defined as an unordered set. In the SAS language a list is

a table. For our discussion here, the list is a collection of the unique 3.

SAS: data set or table

values of the variable region of the table sashelp.shoes.

WHERE ARE LISTS?

SAS provides many unique data sets in either sashelp views or sql

Sources of Lists

dictionary tables. Dilorio and Abolafia [5] sugi29.237] provide a com-

parision of sashelp views and sql dictionary tables and a dozen exam-
ples. Most summarization procedures — freq and means/summary 2

1. sashelp views

. sql dictionary tables

— can produce an output data set which contains a unique list of vari-

able values. Fehd [8|, pnwsug2006.012] provides usage examples of 3.

the more common sql dictionary tables.

summarization procedure output

http://www2.sas.com/proceedings/sugi29/237-29.pdf
http://www.pnwsug.com/Conference_2006/Procedings/PNWSUGotherfiles/PN12FehdSQL.pdf

MAKING UNIQUE FROM DATA

For this reporting example con-
sider these methods to extract a
unique list of parameter values
from a data set. Each method pro-
duces a data set, Regions, with a
list of unique values of the variable
Region. We use this list to write
the calls to the macro Report.

See Ex00: review|or

USING LISTS

Having obtained a list of unique values in
a table, we next need to convert the list
stored in the table to a list available in the
macro environment. Then we can gener-
ate the series of macro calls from this list.
Consider the following methods to gener-
ate these calls to the macro Report:

e proc sort —— make-unique-sort.sas
PROC Sort data = sashelp.Shoes
(keep = Region)

1 T N O

out = Regions
nodupkey;
by Region;

e proc sql

from sashelp.Shoes;
quit;

N

make-unique-sgl-create.sas
PROC SQL; create table Regions as
select distinct Region

e make table into macro array, using either:
1. symputx
2. sglinto
then call in macro $do loop:ovviiiiiin...

e make table into macro variable,
pick item using $scan in $do loop

e make table into macro variable containing calls,
execute calls in macro variable

e read table, write calls to file and include

e read table, call execute generatescalls

See Ex02.
See Ex03.
See Ex04.

See Ex08

MAKE AND ITERATE A MACRO ARRAY

Call SymputX: The call symputx data
step routine is used to assign a value to a
macro variable. By concatenating a num-
ber to the macro variable name we cre-
ate what is effectively a macro array: a
sequentially numbered set of macro vari-
ables. In this data step a series of macro
variables of the form Iteml, Item2, ...,
ItemnN, is created, each holding the name
of one region. When these macro vari-
ables are used inside a macro %do loop
the macro variable form ssItems&I uses
the &I counter as an index to the macro
array; this allows us to step through the
list of values.

Note: In this example we allocate the
macro variable NmbrItems in line 7, and
assign it the value of the upper bound of
our macro array in line 15 which is used in
the %do loop in line 19.

Note in lines 5, 17, and 28: the use of
the macro variable Test ing to print to the

log.
See Ex02)]

Line 17 lists the local macro variables.

The macro %do loop

22
23
24
25
26
27
28

77
78
79
80
81
82
83

make—-array-symputx.sas
$Include Project (make-unique-sort) ;
%$Include Project (Report-Region-macro);

%$Macro Demo (InData = Regions
, InVar = Region
, Testing = 0);
%$local I ; %Let I = 0;
%local NmbrItems; %Let NmbrItems = 0;
DATA _Null_;
do I =1 to Nrows;
set &InData. nobs = Nrows;
call symputx(’/Item’ !! left (put(I,8.))
,&InVar., "1
end;
call symputx ('NmbrItems’, Nrows, ’'1’);
run;
%$1f &Testing. %then %$put _local_;
%do I = 1 %to &NmbrItems.;

$Put *Report (&InVar.
%$Report (&InVar.

= &&Item&I.);
&&Item&I.);

%$end;

run; %Mend Demo;

options mprint; $*echo macro statements;

%$Demo (InData = Regions
, InVar = Region
, Testing =1);

make—array-symputx.log

DEMO
DEMO
DEMO
DEMO
DEMO
DEMO
DEMO

NMBRITEMS 10

INDATA Regions

I0

ITEM1 Africa

ITEM10 Western Europe
TESTING 1

ITEM3 Canada

make—-array-symputx.log

in lines 19-22 writes a 92
note to the log and calls
the macro Report with

each value of Region.

93
94 NOTE :
95
96

97

*Report (Region
MPRINT (REPORT) :
Writing HTML Body file:
MPRINT (REPORT) :
MPRINT (REPORT) :
MPRINT (REPORT) :

Africa)

ods html file "Africa.html"
Africa.html
Title "Sales in Africa";
PROC Report data sashelp.Shoes nowindows;
where Region = "Africa";

style journal;

Here is the list of the

zdir-html.txt

02/12/2007
02/12/2007
02/12/2007
02/12/2007
02/12/2007
02/12/2007
02/12/2007
02/12/2007
02/12/2007
02/12/2007

html files produced
by this method:

09:
09:
09:

09

34p
34p
34p

:34p
09:
09:
09:
09:
09:
09:

34p
34p
34p
34p
34p
34p

17,407 Africa.html

15,603 Asia.html

16,327 Canada.html

15,992 Central America-Caribbean.html
15,973 Eastern Europe.html

15,615 Middle East.html

16,692 Pacific.html

17,057 South America.html

16,341 United States.html

17,404 Western Europe.html

...and the partial listing of the Africa report:

Report-Africa.lst

4 Sales in Africa

8 Product

9 Boot

10 Men’s Casual
11 Men’s Dress
12 Sandal

Subsidiary
Addis Ababa Algiers Cairo Johannesburg
$29,761 $21,297 $4,846 $8,365
$67,242 $63,206 $360,209
$76,793 $123,743 $4,051 .
$62,819 $29,198 $10,532 $17,337

SQL into: A series of macro variables can
also be created using Proc SQL. Unlike
the data step which uses the symputx
routine, SQL uses the into clause to cre-
ate the series of macro variables. The
macro variable names for the lower and
upper bounds are preceded with a colon,
line 9. The code shown here also creates
a series of macro variables of the form of
Iteml, Item2, ..., ItemN.

Note-1: The macro variable SysMaxLong
— line 9 — ensures that the upper bound
of the macro array, i.e., the N-th item, is
created.

Note-2: The advantage of SQL is that the
automatic macro variable SglObs, line
15, contains the value of the upper bound
of the macro array.

Note-3: It is not necessary to sort InData
when using PROC SQL as the data set
with the unique list of values is prepared
with the distinct function, line 8.

See Ex03 and Ex04.

Most PROC SQL examples show the cre-
ation of a macro array with this statement:
into :Iteml - :Item999

23

make-array-sqgl-into.sas
$Include Project (report-Region-macro) ;
$Macro Demo (InData
, InVar
,Testing = 0);

%$local I; %Let I =1;
PROC SQL &If not &Testing $then noprint;
; select distinct &InVar.
into :Iteml - :Item&SysMaxLong.
from &InData.;
quit;
run;
$If &Testing. %then %Put _local_;
%do I = 1 %to &SglObs.;

&&Item&I.);
&&Item&I.);

%$Put *Report (Region
%Report (Region =
$end;

run; %Mend Demo;

%$Demo (InData = sashelp.Shoes
, InVar = Region
,Testing = 1);

%$Demo (InData = sashelp.Shoes
, InVar = Region
,Testing = 0);

SysMaxLong.log

1 %Put SysMaxLong<&SysMaxLong.>;
SysMaxLong<2147483647>

Using sysMaxLong ensures that all the macro variables of your list
are created, i.e., for the 1,000-th ltem — Item1000 — on up to the

maximum number of rows in the table.

MAKE AND SCAN A MACRO VARIABLE

Rather than create a series of macro variables each with one value,
as was done in the previous two examples, we can create a single

macro variable that contains the series of values.

This version of the $Demo macro has been further generalized by
turning the name of the macro to be called into a macro parameter,
MacroName, as well. This feature allows us to test quicker, because

we do not write all ten html files.

In the macro $do loop in lines 19-24, we
use a %Put in line 21 to show that indi-
vidual values are used as a parameter to
a macro call. Here SQL is used to place
the values of Region into the macro vari-
able List, line 12. The separated by
clause, line 13, instructs SQL to create a
concatenated list of values that are sepa-
rated by the Delimiter value in quotes.

Instead of using the s&ItemsI form as
was done before, we now use the $scan
function to parse the individual values
from the macro variable List, line 20.

In this example, line 19, the number of
items in the list is stored in the automatic
macro variable sql0bs.

— write-list-into-mvar-scan.sas
1 %$Include Project (ReportTest);
2 $Macro Demo (InData =

3 , InVar =

4 ,Delimiter = +

5 ,MacroName =

6 , Testing = 0);

7 %$local I; %Let I =1;

8 %$local List;%Let List = *empty;

10 PROC SQL

" H

%$If not &Testing %$then noprint;
select distinct &InVar.

12 into :List

13 separated by "&Delimiter."
14 from &InData.;

15 quit;

16 run;

17 %$if &Testing. %then %put List<&List.>;

18

19 %$do I = 1 %to &SglObs.;

Note in lines 6, 17, and 22, the use of the 20 %$Let Item = %scan(&List.,&I.,&Delimiter.);
macro parameter Testing which either 2 sPut *&MacroName. (&InVar. = <em.);
writes the values in macro variable List 2 ¥if not sTesting. %then
to the log or executes the macro calls. ® . $&MacroName. (¢Invar. = <em.);
24 %$end;
See Ex05) 25 run; $%Mend Demo;
write-list-into-mvar-scan.log
Note that we now 48 30 %$Demo (InData = sashelp.Shoes
use the macro 49 31 , InVar = Region
Reportlest| SO 5 |32 ,MacroName = ReportTest
as not to write the s |33 ,Testing = 1);
html files.
The values in the write-list-into-mvar-scan.log
macro variable o List<Africa+Asia+Canada+Central America/Caribbean+Eastern Europe+Middle
List, written s East+Pacific+South America+United States+Western Europe>
whHetesﬁng: 62 *ReportTest (Region = Africa)

63 *ReportTest (Region = Asia)

We use the option

write-list-into-mvar-scan.log

mprint to con- 72 |34
tinue our testing 7 |35

options mprint;%$*
%$Demo (InData =

view macro statements;
sashelp.Shoes
, InVar = Region
,MacroName = ReportTest

, Testing = 0);

PROC SQL noprint ;

select distinct Region into

:List separated by "+" from

write-list-into-mvar-scan.log

with the macro ™ |3
ReportTest. B |37
76 38
77 |MPRINT (DEMO) :
78 | MPRINT (DEMO) :
79 sashelp.Shoes;
so |MPRINT (DEMO) : quit;
...and see the
macro calls are s *ReportTest (Region = Africa)
correct. 90 |REPORTTEST REGION Africa

91 MPRINT (REPORTTEST) :

run;

92 *ReportTest (Region = Asia)
93 REPORTTEST REGION Asia

94 MPRINT (REPORTTEST) :

run;

WRITE CALLS TO A MACRO VARIABLE

In the previous example the macro vari-
able List was used to hold only the list
of distinct regions. Since we want to use
each region in a macro call we could con-
struct the list to contain the macro calls
themselves.

In this example the concatenation function
cat is used to build the macro call.

Note the function cat does not trim trail-
ing spaces; thus we use trim(Item) in
line 11. Compare the function cat, used
here, to the function cats in later exam-
ples.

See Ex07)

When testing,

- write-calls-into-mvar.sas
1 $Include Project (ReportTest);
2 %$Macro Demo (InData =

3 , InVar =
4 , MacroName =
5 , Testing = 0);

7 PROC SQL &If not &Testing. %$then noprint;

8 ; select distinct &InVar. as Item,
9 cat (%’
10 , "&MacroName. (&InVar.="

trim(Item), ')’
as CallMacro

11 7

12)

13 into :Item,

14 :List separated by ' '
15 from &InData.;

16 quit;

17 run;

18 %$If not &Testing. %then

19 &List.;
%$Mend Demo;

$*execute statements in mvar List;
20 run;

write-calls—-into-mvar.log

43 25
44 26
45 27
46 28

47 MPRINT (DEMO) :
48 MPRINT (DEMO) :

%Demo (InData

= sashelp.Shoes

, InVar = Region
,MacroName = ReportTest
, Testing =1);

PROC SQL ;

select distinct Region as Item, cat('$%’ ,

49 "ReportTest (Region=" , trim(Item), ')’) as CallMacro into :Item, :List
50 separated by ’ from sashelp.Shoes;
51 MPRINT (DEMO) : quit;
52 NOTE: The PROCEDURE SQL printed page 1.
...the calls of the write-calls—-into-mvar.lst
macro are written s |Item CallMacro
to the list: L
8 Africa %$ReportTest (Region=Africa)
9 Asia %ReportTest (Region=Asia)
10 Canada %$ReportTest (Region=Canada)
When not testing write—calls—into-mvar.log
62 29 %$Demo (InData = sashelp.Shoes
63 30 , InVar = Region
64 31 ,MacroName = ReportTest
65 32 , Testing = 0);
66 MPRINT (DEMO) : PROC SQL noprint ;
67 MPRINT (DEMO) : select distinct Region as Item, cat('%’ ,
68 "ReportTest (Region=" , trim(Item), ')’) as CallMacro into :Item, :List

69 separated by ’

70 MPRINT (DEMO) :

from sashelp.Shoes;
quit;

...the calls are ex-

ecuted: 78 | MPRINT (DEMO) :

write-calls—-into-mvar.log
run;

79 REPORTTEST REGION Africa

80 MPRINT (REPORTTEST) :

run;

81 REPORTTEST REGION Asia

82 MPRINT (REPORTTEST) :

run;

WRITE TO FILE THEN INCLUDE

Write to file, then Include, was the first
method available to programmers to repli-
cate statements. It is reviewed here in
order for you to recognize the algorithm
and note that it may be replaced with any
of the above macro variable processing
methods.

The authors share the opinion that this
technique is used primary by those pro-
grammers who do not fully understand the
approaches described in the preceeding
examples.

Note: compare the Stmnt assignment us-
ing function cats in line 16 with cat in
write-calls-call-ex

See EXO9

When testing, the calls of the

macro are written to the log: 63
64
65
66
67
68
69
70
71
72
73
74

— write-calls-to-file-include.sas
1 $Include Project (ReportTest);
2 $Include Project (make-unique-sort);

3 $Macro Demo (InData =
4 , InVar =
5 ,MacroName =
6 , Testing = 0);

8 filename TempFile ’zCallMacro.txt’;
10 DATA _Null_;

11 attrib Stmnt length = $100;

12 file TempFile;

14 do until (EndoFile);

15 set &InData. end = EndoFile;

16 Stmnt = cats(’%’, "&MacroName. (&InVar.="
17 ’ &InVar.

18 ’)

19 $If &Testing. %then %do;

20 putlog Stmnt=;

21 $end;

22 put Stmnt;

23 end;

24 stop; run;
25
26 %$If not &Testing. %then %do;
27 %Include TempFile;

28 %$end;

29 filename TempFile clear;

30 run; $Mend Demo;

write-calls-to-file-include.log

40 %$Demo (InData = Regions

41 , InVar = Region

42 ,MacroName = ReportTest
43 , Testing =1);

NOTE: The file TEMPFILE is:
File Name=C:\LaTeX\HOW-list-proc\sas\zCallMacro.txt,
RECFM=V, LRECL=256

Stmnt=%ReportTest (Region=Africa)
Stmnt=%ReportTest (Region=Asia)
Stmnt=%ReportTest (Region=Canada)

...and the TempFile:

zCallMacro.txt

%ReportTest (Region=Africa)
%$ReportTest (Region=Asia)
%$ReportTest (Region=Canada)

When not testing the TempFile is

$Included. Note use of option =
source2 which allows us to see %
the statements in the included file %
in the log; this is similar to the op- ¥

tion mprint. %

929
100
101
102
103

104

— write-calls-to-file-include.log

115
116
17
118
119
120

REPORTTEST REGION Africa

50

+%ReportTest (Region=Asia)

REPORTTEST REGION Asia

44 options source2;%$*echo Include to log;

45 %$Demo (InData = Regions

46 , InVar = Region

47 ,MacroName = ReportTest

48 , Testing = 0);

NOTE: The file TEMPFILE is:
File Name=C:\LaTeX\HOW-list-proc\sas\zCallMacro.txt,
RECFM=V, LRECL=256

NOTE: 10 records were written to the file TEMPFILE.

- write-calls-to-file-include.log

NOTE: $%$INCLUDE (level 1) file TEMPFILE is file
C:\LaTeX\HOW-list-proc\sas\zCallMacro.txt.

49 +%$ReportTest (Region=Africa)

CALL EXECUTE

The Call Execute data step routine is the
successor to Write To File Include.

A series of macro calls can be managed
in the data step. The call execute rou-
tine allows us to build statements that are
stacked for later execution. If these state-
ments contain macro calls, the macro
calls are executed as soon as the data
step terminates.

In this example the data step reads the
unique values of region, and uses the
cats function to build the macro call with
the current value of region. Again there
will be one macro call for each region, but
we did not have to create any of the inter-
mediate macro variables!

See Ex10)]

— write-calls-call-exec-demo.sas
$Include Project (make-unique-sort);
%$Include Project (ReportTest);

%$Macro Demo (InData =

, InVar =
,MacroName =
, Testing = 0);
DATA _Null_;
do until (EndoFile);

set &InData. end = EndoFile;

call execute (

cats(’%’, "&MacroName. (&InVar.="
’ &InVar.
,")’ %*end macro call;
) $*end cats;
) ; %$*end execute;
end;
stop; run; %$*calls executed here;
run; $Mend Demo;
%$Demo (InData = Regions
, InVar = Region
,MacroName = ReportTest
, Testing =1);

Caveat: Call Execute does not execute macros correctly when the
macro contains complexity: i.e., when the macro contains any of these
statements: $1if, $do, or symput, as do our macros Report and Re-
portTest. An explanation of the processing issue is beyond the scope
of this paper. The technical description is that macros called by call
execute are expanded when they are pushed onto the SAS language
processor stack. In order for the macro to work correctly it must be ex-
panded when the macro call is popped from the stack. We accomplish
this delay with the nrstr function, — NoRescan STRing — shown in

the next example.

Whitlock [13], sugi22.070] illustrates the problems associated with ex-
ecuting macro statements before SAS statements.

10

http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF

This portion of the log shows that the
macro statements are executed before
the SAS statements; this is an indication
that the macro is not executing the way
that we would like.

... here are the SAS statements:

Our last example combines the algorithms
from above examples so that the macro
calls may be reviewed while testing.

Note.1 line 13: Compare the Stmnt as-
signment using function cats with func-
tion cat inlwrite-calls-fo-file-includel

Note.2 lines 13-15: This production
macro writes a different macro call than
our previous examples:
previous: $Report (Region=Africa)
here: $%Report (Var=Region
,Value=Africa)

Note.3 line 22: Using the nrstr quoting
function. In this call execute state-
ment, the nrstr delays the expansion of
the macro call until it is removed (popped)
from the stack.

See Ex11)

Note that we use a different ReportTest
macro for this production version, so that
this program may be used to test and it-
erate other macros besides our Report-
sashelp.Shoes.Region macro.

51
52
53
54
55
56
57

74
75
76

28
29
30
31

write-calls-call-exec—demo.log

%$Demo (InData = Regions
, InVar = Region
,MacroName = ReportTest
, Testing =1);

REPORTTEST REGION Africa
REPORTTEST REGION Asia

NOTE:
1
2

CALL

write-calls-call-exec—-demo.log
EXECUTE generated line.

+ run;

+ run;

$If &Testing.

DATA

attrib Stmnt

_Nu

write-calls-call-execute.sas

$Macro CallExec (InData =

, InVar .

,MacroName =

, Testing = 0);
%then %put _local_;

11_;

length = $100;

do until (EndoFile);

set &InData.

Stmnt =

$if &
put Stmnt=;

o
°

%else %

end;

stop;
run;

C

o
°
[
%
run;
$Men

end = EndoFile;

cats(’'%’, "&MacroName."
, "(Var=&InvVar."
, " ,Value=', &InVar.
’)’

)

Testing. %then %do;

end;

do;

all execute (cats(’%nrstr (',

))i

Stmnt,

end;
do until (EndoFile);

$*macro calls execute here;
d;

I)I

ReportTestVarValue.sas

%$Macro ReportTest (Var =

,Value =);

$put _local_;

$Put
run;

(wher
$Mend

e = (&Var. eq "&Value."));

’

11

See the |write-calls-call-exec-Class-Sex| example following |write-calls-call-exec-Shoes-Region|

Here is the test
sashelp.Shoes.Region.

program for

This portion of the log shows that the
statements written to the log while testing.

This portion of the log shows that the
macro statements are executed correctly.

This test program for sashelp.Class.Sex
shows that the macros CallExec and
ReportTest can be used to test other list
processing macros.

57

58

98

99
100
101
102
103
104

106
107
108

62

63

write-calls—-call-exec-Shoes-Region.sas
options source2;% echo include statements;
%$Include Project (make-unique-sort);
%$Include Project (ReportTestVarValue) ;
$Include Project (write-calls-call-execute);

options mprint;%$* echo macro statements;
%$CallExec (InData = Regions

, InVar = Region

,MacroName = ReportTest

, Testing = 1);
%$CallExec (InData = Regions

, InVar = Region

,MacroName = ReportTest);

write-calls-call-exec-Shoes-Region.log
Stmnt=%ReportTest (Var=Region,Value=Africa)
Stmnt=%ReportTest (Var=Region, Value=Asia)

write-calls—-call-exec-Shoes-Region.log
NOTE: CALL EXECUTE generated line.
1 +
REPORTTEST VALUE Africa
REPORTTEST VAR Region
(where = (Region eq "Africa"))
MPRINT (REPORTTEST) : run;
2 + S%ReportTest (Var=Region,Value=Asia)
REPORTTEST VALUE Asia
REPORTTEST VAR Region
(where = (Region eq "Asia"))

MPRINT (REPORTTEST) : run;

write-calls—-call-exec—-Class—-Sex.sas
options source2;% echo include statements;
$Include Project (ReportTestVarValue) ;
%$Include Project (write-calls-call-execute);

options mprint;%$* echo macro statements;
PROC Sort data = sashelp.Class
(keep = Sex)
out = Sexs
nodupkey;
by Sex;
run;
%$CallExec (InData = Sexs
, InVar = Sex
,MacroName = ReportTest
, Testing =1);

write-calls-call-exec-Class-Sex.log
Stmnt=%ReportTest (Var=Sex, Value=F)
Stmnt=%ReportTest (Var=Sex, Value=M)

12

%$ReportTest (Var=Region,Value=Africa)

SUMMARY There are a number of ways to both build and use a list of values in the macro language. To the

programmer the huge advantage is that we can automate the process. SAS can build the list;
SAS can determine how many items are in the list; SAS can step through the list. The processing
of the list is independent of the programmer. It is a dynamic process!

While the code examples in this paper are fairly straightforward real life tends not to be so easy.
Study this paper and the references in the 'Suggested Reading’ section. Be patient with yourself.
Pick the method that makes the most sense to you and generate a simple example. Practice.
Don’t expect a full understanding to be instant. Our brains tend not to be that cooperative, but
with practice you too will be able to generate dynamic applications.

SUGGESTED READING
applications Dilorio and Abolafia [5] sugi29.237] provide a dozen examples, Fehd [9, nesug2006.014] shows

a data review report which writes constant text of macro calls into a macro variable, Fehd [8|
pnwsug2006.012] provides sqgl examples using the more common dictionary tables

books Burlew [1}, saspress.56516] ; Carpenter [2, saspress.59224]
call execute Michel [11} sugi30.027] shows applications using procs compare, copy and print; Virgile [12,

sugi22.086] demonstrates conditional execution of procedures and compares macro do loops
with call execute; Whitlock [13] sugi22.070] highlights the problems of executing code containing
both macro and sas statements

macro arrays Carpenter [3} |sugi30.028] compares symput with sqgl to create macro arrays, demonstrates use

of scl functions; Clay [4] sugi31.040] presents two macro functions built with macro arrays; Fehd
[6, 'sugi22.080] uses proc contents output data set and symput to create macro arrays; Fehd [7,
sugi29.070] uses proc sql to create macro arrays

sashelp views Dilorio and Abolafia [5} sugi29.237] provide a thorough comparision of sashelp views and sql

dictionary tables

SQL Dilorio and Abolafia [5], sugi29.237] provide examples using sql; Fehd [7), sugi29.070] uses proc

sqgl to create macro arrays ; Fehd [9, nesug2006.014] uses proc sql to write constant text of macro
calls into a macro variable; Fehd [8, pnwsug2006.012] provides examples using most common
sql dictionary tables; Feng [10, sugi31.044] discusses general usage of proc sql; Whitlock [14]
sugi26.060] compares creating and iterating macro arrays with writing constant text of macro calls
into a macro variable

BIBLIOGRAPHY

(1]

(2]

(3]

(4]

(5]

Michele Burlew. SAS Macro Programming Made Easy, Second Edition. Cary, NC: SAS Institute Inc.,
1998. ISBN 978-1-59047-882-0. URL http://support.sas.com/publishing/bbu/companion_site/
56516.htmll

Arthur L. Carpenter. Carpenter's Complete Guide to the SAS Macro Language, Second Edition. Cary, NC:
SAS Institute Inc., 2004. URL http://support.sas.com/publishing/bbu/companion_site/59224.
html. 13 chap., 475 pp., appendices: 5, glossary: 3 pp., bibliography: 19 pp., index: 13 pp.

Arthur L. Carpenter. Storing and using a list of values in a macro variable. In Proceedings of the 30th SAS
User Group International Conference, 2005. URL http://www2.sas.com/proceedings/sugi30/028-
30.pdf. §: Coders’ Corner, 6 pp.; making macro arrays using symputx or sql, iterating macro arrays, using scl
functions, bibliography.

Ted Clay. Tight looping with macro arrays. In Proceedings of the 31st SAS User Group International Con-
ference, 2006. URL http://www2.sas.com/proceedings/sugi31/040-31.pdf. §: Coders’ Corner, 8
pp.; two macro functions: array and do_over.

Frank Dilorio and Jeff Abolafia. Dictionary tables and views: Essential tools for serious applications. In
Proceedings of the 29th SAS User Group International Conference, 2002. URL http://www2.sas.com/
proceedings/sugi29/237-29.pdfl §: Tutorials, 19 pp.; comparison of data structure of dictionary tables
and sashelp views, review of differences between v6, v8, and v9, 12 examples.

13

http://www2.sas.com/proceedings/sugi29/237-29.pdf
http://www.nesug.info/Proceedings/nesug06/cc/cc14.pdf
http://www.pnwsug.com/Conference_2006/Procedings/PNWSUGotherfiles/PN12FehdSQL.pdf
http://support.sas.com/publishing/bbu/companion_site/56516.html
http://support.sas.com/publishing/bbu/companion_site/59224.html
http://www2.sas.com/proceedings/sugi30/027-30.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER86.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.pdf
http://www2.sas.com/proceedings/sugi30/028-30.pdf
http://www2.sas.com/proceedings/sugi31/040-31.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER80.pdf
http://www2.sas.com/proceedings/sugi29/070-29.pdf
http://www2.sas.com/proceedings/sugi29/237-29.pdf
http://www2.sas.com/proceedings/sugi29/237-29.pdf
http://www2.sas.com/proceedings/sugi29/070-29.pdf
http://www.nesug.info/Proceedings/nesug06/cc/cc14.pdf
http://www.pnwsug.com/Conference_2006/Procedings/PNWSUGotherfiles/PN12FehdSQL.pdf
http://www2.sas.com/proceedings/sugi31/044-31.pdf
http://www2.sas.com/proceedings/sugi26//p060-26.pdf
http://support.sas.com/publishing/bbu/companion_site/56516.html
http://support.sas.com/publishing/bbu/companion_site/56516.html
http://support.sas.com/publishing/bbu/companion_site/59224.html
http://support.sas.com/publishing/bbu/companion_site/59224.html
http://www2.sas.com/proceedings/sugi30/028-30.pdf
http://www2.sas.com/proceedings/sugi30/028-30.pdf
http://www2.sas.com/proceedings/sugi31/040-31.pdf
http://www2.sas.com/proceedings/sugi29/237-29.pdf
http://www2.sas.com/proceedings/sugi29/237-29.pdf

(6]

[7

—_—

8

—_

(9]

[10]

[11]

[12]

[13]

[14]

Ronald Fehd. Array: Construction and usage of arrays of macro variables. In Proceedings of the 22nd
SAS User Group International Conference, 1997. URL http://www2.sas.com/proceedings/sugi22/
CODERS/PAPERS0.PDF. §: Coders’ Corner, 4 pp.; using proc contents output and symput, bibliography.

Ronald Fehd. Array: Construction and usage of arrays of macro variables. In Proceedings of the 29th SAS
User Group International Conference, 2002. URL http://www2.sas.com/proceedings/sugi29/070-
29.pdf. §: Coders’ Corner, 6 pp.; using proc sql, bibliography.

Ronald Fehd. How to use proc sql select into for list processing. In Proceedings of the Pacific NorthWest
SAS User Group Conference, 2006. URL http://www.pnwsug.com/Conference_2006/Procedings/
PNWSUGotherfiles/PN12FehdSQL.pdf. §: Hands On Workshop, 15 pp.; sql select syntax, comparison of
procedures vs. sql, writing constant text into macro variable, using dictionary tables; bibliography.

Ronald Fehd. Journeymen’s tools: Data review macro FregAll — using proc sql list processing with dictio-
nary.columns to eliminate macro do loops. In Proceedings of the NorthEast SAS User Group Conference,
2006. URL http://www2.sas.com/proceedings/sgf2007/028-2007.pdf. §: Coders’ Corner, 10 pp.;
designing macros for reporting, creating and using macro arrays, writing text of macro calls into macro variable,
executing macro calls in macro variable, bibliography.

Ying Feng. The sql procedure: When and how to use it. In Proceedings of the 31st SAS User Group Interna-
tional Conference, 2006. URL http://www2.sas.com/proceedings/sugi31/044-31.pdf. §: Coders’
Corner, 7 pp.; using sql to make and iterate a macro array, bibliography.

Denis Michel. Call execute: A powerful data management tool. In Proceedings of the 30th SAS User Group
International Conference, 2005. URL http://www2.sas.com/proceedings/sugi30/027-30.pdf. §:
Applications Development, 13 pp.; reading sql dictionary tables, executing constant text, bibliography.

Bob Virgile. Magic with call execute. In Proceedings of the 22nd SAS User Group International Conference,
1997. URL http://www2.sas.com/proceedings/sugi22/CODERS/PAPERS6.PDF. §: Coders’ Corner,
2 pp.; conditional execution of procedures, comparison of macro do loop and call execute.

H. lan Whitlock. Call execute: How and why. In Proceedings of the 22nd SAS User Group International Con-
ference, 1997. URL http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF. §: Coders’
Corner, 5 pp.; executing statements and macros, comparing compile and execution timing of sas and macro,
bibliography.

lan Whitlock. Proc sql: Is it a required tool for good sas programming? In Proceedings of the 22nd SAS User
Group International Conference, 1997. URL|http://www2.sas.com/proceedings/sugi26//p060-26.
pdfl §: Beginning Tutorials, 6 pp.; using sql to create macro arrays, selecting distinct text into macro variable.

Author: Ronald Fehd mailto:RJF2Qcdc.gov Author: Art Carpenter mailto:art@caloxy.com
Centers for Disease Control CA Occidental Consultants www.caloxy.com
4770 Buford Hwy NE PO Box 430

Atlanta GA 30341-3724 Vista, CA 92085-0430

To get the code examples in this paper send an e-mail to SAS and all other SAS Institute Inc. product or service
the author mailto:RJF2@cdc.gov|with the subject: names are registered trademarks or trademarks of SAS

request HOW List Processing

Document Production: This paper was
typeset in IATEX. For further information about
using IATEX to write your SUG paper, consult

Institute Inc. in the USA and other countries. ® indicates
USA registration.

http://www.listserv.uga.edu/cgi-bin/wa?Sl=sas—-1
Search for :
The subject is or contains: LaTeX

14 .
the SAS-L archives: The author’s address : RJF2

Since : 01 June 2003

14

http://www2.sas.com/proceedings/sugi22/CODERS/PAPER80.PDF
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER80.PDF
http://www2.sas.com/proceedings/sugi29/070-29.pdf
http://www2.sas.com/proceedings/sugi29/070-29.pdf
http://www.pnwsug.com/Conference_2006/Procedings/PNWSUGotherfiles/PN12FehdSQL.pdf
http://www.pnwsug.com/Conference_2006/Procedings/PNWSUGotherfiles/PN12FehdSQL.pdf
http://www2.sas.com/proceedings/sgf2007/028-2007.pdf
http://www2.sas.com/proceedings/sugi31/044-31.pdf
http://www2.sas.com/proceedings/sugi30/027-30.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER86.PDF
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF
http://www2.sas.com/proceedings/sugi26//p060-26.pdf
http://www2.sas.com/proceedings/sugi26//p060-26.pdf
mailto:RJF2@cdc.gov
mailto:art@caloxy.com
www.caloxy.com
mailto:RJF2@cdc.gov
http://www.latex-project.org/
http://www.listserv.uga.edu/cgi-bin/wa?S1=sas-l

APPENDIX

PROJECT FILES FOR BATCH PROCESSING

These files are used
in the project folder
in order to run each
of the programs and
produce .log and .Ist

1

3

4

files for inclusion in °
6

this paper.

NOTE: if you use either of these configuration files you must change the value of Pro jRoot:

sas.bat

rem name: SAS.bat for either V8 or V9
if not exist "C:\Program Files\SAS\SAS 9.1\SAS.exe" goto v8
"C:\Program Files\SAS\SAS 9.1\SAS.exe" %*
goto EOF
:v8
"C:\Program Files\SAS Institute\SAS\V8\SAS.exe" %*
:EOF

sasv8.cfg
/*name: SASv8.cfg
06Jun08 RJF2

B */
—config ’C:\Program Files\SAS Institute\SAS\V8\SASv8.cfg’
-SET ProjRoot "C:\LaTeX\HOW-list-proc’

-SASinitialFolder ' !ProjRoot\sas’

-noovp /* no overprint errors nor warnings */
-nosplash /* no display SAS banner at startup */

sasv8.cfg:line 5
sasv9.cfg: line 4

to the name of the parent folder of your sas programs. If sas is not the name of your program folder then change
the value of SASinitialFolder as well. Here is an example for programs in C: /temp/programs:

—-set ProjRoot ’'C:\temp’
-sasinitialfolder ' !ProjRoot\programs’

sasv9.cfg

/*name: SASv9.cfg for SGF HOW-List-Processing-Basics by Fehd+Carpenter
RJF2 3/1/2007 8:37AM

-SET ProjRoot "C:\LaTeX\HOW-list-proc’
-SASinitialFolder ' !ProjRoot\sas’
e */

—-SASinitialFolder ’c:\workshop\wsl13’

-noovp /* no overprint errors nor warnings */
-nosplash /* no display SAS banner at startup */

15

autoexec.sas

1 filename Project '.’; %* here: same folder ;
2 options nocenter %$* flush left output ;
3 nodate %$* no date-stamp ;
4 nonumber %* no page numbers ;
5 details %$* Proc Contents ;
6 formchar = %* no special chars ;
7 r _ ’
8 formdlim = 7 7/ $* no CR/LF for page break;
9 fullstimer %* expand time block ;
10 linesize = 72 %* for LaTeX printing ;
11 pagesize = max; %* no page breaks in *.lst;
12 Title "SGF: Fehd+Carpenter: HOW on list processing’;
13
14 %* Arts path;
15 %$Let Path
16 =C:\Primary\Presentations\papers\Papers70-79\72-ManagingLists\Workshop\;
17
18 %* Rons path;
19 %$Let Path = ;%*here;
EXAMPLE FILES FOR WORKSHOP
Ex00.sas
*Ex00 fix path for SGF; 1. |see: make-unique-sort|
$*Let Path = ?727?;
*review:; 2. [see: Report-Region-macro|
%$*Include Project (make-unique-sort);
%$*Include Project (Report-Region-macro); S.Bee:RepoﬂTésﬂ
%$*Include Project (ReportTest);
Ex01.sas
* Ex01.sas; 1. |see: Report-Africal

ods html file =
style =

"Africa.html’
journal;

Title ’'Sales in Africa’;

PROC Report data = sashelp.Shoes

nowindows;

where Region = ’'Africa’;
column Product Subsidiary,
Sales;
define Product / group;
define Subsidiary / across;
define Sales / analysis

rro.
’

run;
ods html close;

16

Ex02.sas

* Ex02.sas: vertical to vertical: ;
* macro array;
*Q: name of variable with number of items?;

options
%$Include Project (make-unique-sort);

nosource?2; $*echo Include to log;

DATA _Null_;
set Regions;
Count +1;
call symputx (’Region’ || left (put(
Count , 3.))

, Region, 1) ;
call symputx(’Count ’, Count , "1’);
run;

%$Put _global_;%* Show macro variables;

%Put Regionl<&Regionl.>;

*task: show 3rd region;

17

1. [see: make-unique-sort

Ex03.sas
* Ex03.sas: vertical to vertical: ;
* macro array;

*Q: name of variable with number of items?;

PROC SQL print;

select distinct Region
into :Regionl - :Region999
from sashelp.Shoes;

quit;

$Put _global_;%* Show macro variables;

$Let I = 3;
$Put Region&I.<&&Region&I..>;

*task: show last region;

21

22

23

24

25

Ex04.sas

* Ex04.sas: vertical to vertical: ;

* macro array, do loop;
options nosource2;%$*echo Include to log;

%$Include Project (Report-Region-macro) ;
%$Include Project (ReportTest);

options mprint;
$macro Demo;
%$local 1I;

PROC SQL noprint;

select distinct Region

into :Regionl - :Region999
from sashelp.Shoes;
quit;

%do I = 1 %to &SglObs.;
%$put *Report (Region = &&Regioné&I.);
%end;

$mend Demo;

%$Demo;

*task
*solution:

execute macro Report;
see make—array-sgl-into;

1. [see: Report-Region-macro|

2. |see: ReportTest|

Ex05.sas
* Ex05.sas: vertical to horizontal: ;
* write list to macro var;

PROC SQL noprint;
select distinct Region

into :Regions

separated by "+’
from sashelp.Shoes;
quit;

%put Regions |&Regions.|;

*task use macro function scan;
* show 5th region;

*put regionb (scan(Regions,...));
*solution: see Ex06;

20
21
22
23
24
25
26

27

18

1. |see: Report-Region-macro|

2. |see: ReportTest|

|see: make-array-sql-into|

Ex06.sas
* Ex06.sas: vertical to horizontal: ;
* write list to macro var, scan;

options nosource2;%$*echo Include to log;
%$Include Project (Report-Region-macro);
%$Include Project (ReportTest);

options mprint;

$macro Demo;
$local I Item;

PROC SQL noprint;
select distinct Region

into :Regions separated by '+’
from sashelp.Shoes;
quit;

%put Regions: |&Regions.|;

%do I = 1 %to &SglObs.;
%$let Item = %scan(&Regions., &I., +);
%$put *ReportTest (Region = &Item.);
%end;

run; $mend Demo;

%$Demo

$*task execute macro ReportTest;
$*solution: see write-list-into-mvar-scan;

21
22
23
24

25

20
21
22
23
24
25
26
27
28
29
30
31
32
33

Ex07.sas
* Ex07.sas: vertical to horizontal: ;
* write macro calls ;
* into macro var;

options nosource2;%$*echo Include to log;
%$Include Project (Report-Region-macro);

%$Include Project (ReportTest);

PROC SQL noprint;

create table Regions as

select distinct Region

from sashelp.Shoes;

select cats("*’/
, "Report (Region=’
, Region
’ N
)

into :List separated by ’ '/

from Regions;

quit;

%$Put List<&List.>;

*task
*solution:

execute macro ReportTest;
see Ex08;

Ex09.sas
* Ex09.sas: vertical:
* add prefix and suffix;
* write to file, include;

options nosource2;%$*echo Include to log;
%$Include Project (make-unique-sort);
%Include Project (Report-Region-macro);
%$Include Project (ReportTest);

options mprint;

filename TempFile ’zCallMacroX.txt’;

DATA _Null_;
attrib Stmnt length = $100;
file TempFile;

do until (EndoFile);
set Regions end = EndoFile;
Stmnt = cats(’"*’
, "ReportTest (Region=’'
, Region
’)
putlog Stmnt=;
put Stmnt; $*to file;
end; $* do until;
stop; run;

%$Include TempFile/source?2;
filename TempFile clear;

run;
*task execute macro ReportTest;
*solution: see write-calls-to-file-include;

19

Ex08.sas

* Ex08.sas: vertical to horizontal;

* write macro calls ;
* into macro var, execute;
options nosource2;

%$Include Project (Report-Region-macro);
%$Include Project (ReportTest);

PROC SQL noprint;
create table Regions as
select distinct Region
from sashelp.Shoes;
select cats("%’
, "ReportTest (Region=’'
, Region
’ ")
)
into :List separated by ’ '/
from Regions;

quit;

&List.; $*execute calls;

. write-calls-to-file-incl

Ex10.sas

* Ex10.sas: vertical: ;

* add prefix and suffix;
* call execute without nrstr;
options nosource2;%$*echo Include to log;

%$Include Project (make-unique-sort);
%Include Project (Report-Region-macro);
%$Include Project (ReportTest);

%* NOTE: not works correctly!;

options mprint;

DATA _Null_;

set Regions;

call execute (' $ReportTest (Region=’

|| Region [| ")");
*call execute (’ $Report (Region="'
|| Region || ")");

run; $*calls executed here;
run;

20
21
22
23
24
25
26
27
28

30

20

[See explanation at Caveat.|

Exll.sas

* Exll.sas: vertical: ;

* add prefix and suffix;
* call execute with nrstr;
options nosource2;%*echo Include to log;

%$Include Project (make-unique-sort);
%$Include Project (Report-Region-macro) ;
%$Include Project (ReportTest);

*Include Project (ReportTestVarValue);
options mprint;

DATA _Null_;
set Regions;
call execute(
cats (
"$nrstr (/
, " $ReportTest (Region="'
, Region
, 7)Y’ %*end macro;
%$*end nrstr;
) $*end cats;
) $*end execute
run; $*calls executed here;
run;

*task: execute ReportTest

* with the Var=
* Value= parameters;
*solution: see write-calls-call-execute;

*solution: see Exll-solution;

21
22
23

20
21
22
23
24

20
21

22

SOLUTIONS TO EXAMPLES

S02.sas

%Put Regionl<&Regionl.>;

*task: show 3rd region;
%Put Region3<&Region3.>;

74

75

76

S03.sas

$Let I = 3;
%$Put Regioné&I.<&&Regioné&I..>;

*task: show last region;
$*solution 1:;

%$Let I = &SglObs.;

$Put Region&I.<&&Region&I..>;

%$*solution 2:;
%$Put Region&SglObs.<&&Region&SglObs..>;

63
64
65
66

S04.sas
$do I = 1 %to &SglObs.;
%$*task: execute macro Report:;

&&Regioné&I.);
&&Regioné&I.);

$put *Report (Region =
%$Report (Region =

59
60

%$end;
S05.sas
*task use macro function scan;
* show 5th region;

%put regb(%scan(&Regions,5,+));

45
46

61
62
63
64

91
92
93

%

S06.sas
$do I = 1 %to &SglObs.;
%$let Item = %scan(&Regions., &I., +);
%$*task: execute macro ReportTest;
$put *ReportTest (Region = &Item.);
%$ReportTest (Region = &Item.);
%end;
S09.sas
$*task execute macro ReportTest;
$*Stmnt = cats(’*’;
Stmnt = cats('%’
, "ReportTest (Region=’'
Sll.sas
$* , " $ReportTest (Region="';
call execute (

cats (
"$nrstr (/
, " $ReportTest (Var=Region, Value='
’ Region

68
69
70
7
72

S02.1log
26 *task: show 3rd region;
27 %$Put Region3<&Region3.>;
Region3<Canada>
S03.1log
18 $*solution 1:;
19 %$Let I = &SglObs.;
20 %$Put Region&I.<&&Region&I..>;

Regionl0O<Western Europe>

S04.1log

NOTE: Writing HTML Body file: Africa.html
MPRINT (REPORT) : Title "Sales in Africa";
505.1og

15 %put regb (%$scan (&Regions,5,+));
regb (Eastern Europe)

S506.1og

*ReportTest (Region = Africa)
REPORTTEST REGION Africa
MPRINT (REPORTTEST) :
MPRINT (DEMO) : ;

run;

S09.1og

76 +%ReportTest (Region=Africa)
REPORTTEST REGION Africa

MPRINT (REPORTTEST) : run;

77 +%ReportTest (Region=Asia)

S1ll.log

1

+ $ReportTest (Var=Region,Value=Africa)

REPORTTEST VALUE Africa
REPORTTEST VAR Region

(where

MPRINT (REPORTTEST) :

= (Region eqg "Africa"))
run;

21

