
1

The MEANS/SUMMARY Procedure:
Getting Started and Doing More

Arthur L. Carpenter
California Occidental Consultants

ABSTRACT
The MEANS/SUMMARY procedure is a workhorse for most data analysts.  It is used to create tables of summary statistics as
well as complex summary data sets.  The user has a great many options which can be used to customize what the procedure is to
produce.  Unfortunately most analysts rely on only a few of the simpler basic ways of setting up the PROC step, never realizing
that a number of less commonly used options and statements exist that can greatly simplify the procedure code, the analysis steps,
and the resulting output.  

This tutorial begins with the basic statements of the MEANS/SUMMARY procedure and follows up with introductions to a
number of important and useful options and statements that can provide the analyst with much needed tools.  With this practical
knowledge, you can greatly enhance the usability of the procedure and then you too will be doing more with
MEANS/SUMMARY.

KEY WORDS
OUTPUT, MEANS, SUMMARY, AUTONAME, _TYPE_, WAYS, LEVELS, MAXID, GROUPID, preloaded formats

INTRODUCTION
PROC MEANS is one of SAS’s original procedures, and it’s initial mandate was to create printed tables of summary statistics. 
Later PROC SUMMARY was introduced to create summary data sets.  Although these two procedures grew up on the opposite
side of the tracks, over time both has evolved so that under the current version of SAS they actually both use the same software
behind the scenes.

These two procedures completely share capabilities.  In fact neither can do anything that the other cannot do.  Only some of the
defaults are different (as they reflect the procedures’ original roots).

For the analyst faced with creating statistical summaries, the MEANS/SUMMARY procedure is indispensable.  While it is fairly
simple to generate a straightforward statistical summary, these procedures allow a complex list of options and statements that
give the analyst a great deal of control.

Because of the similarity of these two procedures, examples will tend to show one or the other but not both.  When I use MEANS
or SUMMARY, I tend to select the procedure based on it primary objective of the step (SUMMARY for a summary data set and
MEANS for a printed table).  Even that ‘rule’, however is rather lax as MEANS has the further advantage of only having 5 letters
in the procedure name.



2

A Simple Printed Table

The MEANS Procedure

                 Analysis Variable : Weight

 N          Mean       Std Dev       Minimum       Maximum
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
19   100.0263158    22.7739335    50.5000000   150.0000000
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

The First Two Statistical Moments

The MEANS Procedure

                    Analysis Variable : Weight

 N            Mean        Variance         Std Dev       Std Error
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
19     100.0263158     518.6520468      22.7739335       5.2246987
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

BASIC STATEMENTS
The MEANS/SUMMARY procedure is so powerful that just a few simple statements and options can produce fairly complex and
useful summary tables.

Differences Between MEANS and SUMMARY
Originally MEANS was used to generate printed tables and SUMMARY a summary data set.  While both procedures can now
create either type of output, the defaults for both tend to reflect the original roots of the procedure.

One of the primary differences in defaults is seen by looking at the way each procedure creates printed tables.  Printed tables are
routed through the Output Delivery System to a destination such as LISTING or HTML.  By default MEANS always creates a
table to be printed.  If you do not want a printed table you must explicitly turn it off (NOPRINT option).  On the other hand, the
SUMMARY procedure never creates a printed table unless it is specifically requested (PRINT option).

There are a few other differences between MEANS and SUMMARY.  In each case the difference reflects default behaviors, and
these will be pointed out in the appropriate sections of this paper.

Creating a Basic Summary Table
Very little needs to be done to create a simple summary table.  The DATA= option in the PROC statement identifies the data set
to be summarized and the VAR statement lists one or more numeric variables to be analyzed. 

proc means 
         data=sashelp.class;

var weight;
run;

We can see that the mean weight of the 19 students
in the CLASS data set is something over 100
pounds.  Because we left the selection of the
statistics to the defaults, the table contains N, mean,
standard deviation, minimum and the maximum. 

Selecting Statistics
Generally we want more control over which statistics are to be selected.  When you want to specifically select statistics, they are
listed as options on the PROC statement.

title1 'The First Two Statistical Moments';
proc means data=sashelp.class 

                n mean var std stderr;
var weight;
run;



3

A Simple Summary Data Set

Obs    _TYPE_    _FREQ_    _STAT_     Weight

 1        0        19       N         19.000
 2        0        19       MIN       50.500
 3        0        19       MAX      150.000
 4        0        19       MEAN     100.026
 5        0        19       STD       22.774

The list of available statistics is fairly comprehensive.  A subset of which includes:
! n number of observations used to calculate the statistics
! nmiss     number of observations with missing values
! min minimum value taken on by the data
! max maximum value taken on by the data
! range difference between the min and the max
! sum total of the data
! mean arithmetic mean
! std standard deviation
! stderr     standard error
! var variance
! skewness symmetry of the data's distribution
! kurtosis peakedness of the data's distribution

A number of statistics having to do with percentiles and quantiles are also available, including:
! median 50th percentile
! p50 50th percentile (or second quartile)
! p25 | q1 25th percentile (or first quartile)
! p75 | q3 75th percentile (or third quartile)
! p1 p5 p10 other percentiles
! p90 p95 p99 other percentiles

Starting in SAS9.2 the MODE statistic is also available.

Statistics listed on the PROC statement are only applied to the printed table and have NOTHING to do with and summary data
sets that are also created.

Creating a Summary Data Set
Both procedures can also be used to create a summary data set through the use of the OUTPUT statement.  Without using ODS, a
summary data set will not be created unless the OUTPUT statement is present.  This is true for both the MEANS and
SUMMARY procedures.

title1 'A Simple Summary Data Set';
proc means data=sashelp.class 

                noprint;
var weight;
output out=summrydat;
run; 

The NOPRINT option is used with MEANS, because a printed table
is not wanted.  A PROC PRINT of the summary data set
(WORK.SUMMRYDAT) shows the following:

Again since statistics were not specified the same default list of statistics as was used in the MEANS’s printed table appears here.

Selecting the Statistics and Naming the Variables in the Summary Data Set
Usually when you create a summary data set, you will want to specifically select the statistics.  These are specified on the
OUTPUT statement.  Remember statistics listed on the PROC statement only apply to printed tables and have nothing to do with
the statistics that you want in the summary data set.

The techniques shown below can be combined - experiment. 

Selecting Statistics
Statistics are selected by using their names as options in the OUTPUT statement.  The name of each statistic is followed by an
equal sign.  The following OUTPUT statement requests that the mean weight be calculated and saved in the data set
SUMMRYDAT.



4

Selecting Multiple Statistics

                                                   std_
Obs    _TYPE_    _FREQ_    number    average    deviation

 1        0        19        19      100.026     22.7739

title1 'Selected Statistics';
proc summary data=sashelp.class;
var weight;
output out=summrydat mean=;
run;

The mean weight will be stored in a variable named WEIGHT.  This technique allows you to only pick a single statistic, and as
such it is limited, however when combined with the techniques shown below, it can be very flexible.

Explicate Naming
By following the equal sign with a name, you can provide names for the new variables.  This allows you to name more than one
statistic on the OUTPUT statement.

title1 'Selecting Multiple Statistics';
proc summary data=sashelp.class;
var weight;
output out=summrydat n=number mean=average std=std_deviation;
run;

You can also name multiple analysis variables.  Here both HEIGHT and WEIGHT are specified.

title1 'Multiple Analysis Variables';
proc summary data=sashelp.class;
var height weight;
output out =summrydat 
       n    = ht_n    wt_n
       mean = mean_ht mean_wt
       std  = sd_ht   sd_wt;
run;

Be sure to be careful here as the order of the variables in the VAR statement determines which variable is for height and which is
for weight.  You should also be smart about naming conventions.  In the previous example the statistics for N are not consistently
named relative to those for the MEAN and STD.

This technique does not allow you to ‘skip’ statistics.  If you did not want the mean for HEIGHT, but only the mean for
WEIGHT, this would not be possible, because HEIGHT is first on the VAR statement.  To get around this you can use the
techniques on naming the statistics shown in the next section.



5

Selective Associations

Obs  _TYPE_  _FREQ_  ht_n  wt_n  wt_mean   ht_std

 1      0     19      19     19  100.026  5.12708

Using AUTONAME

                                                   Height_    Weight_    Height_    Weight_
Obs    _TYPE_    _FREQ_    Height_N    Weight_N      Mean       Mean      StdDev     StdDev

 1        0        19         19          19       62.3368    100.026    5.12708    22.7739

Selected Naming
When there is more than one variable in the VAR statement, but you do not want every statistic calculated for every analysis
variable, you can selectively associate statistics with analysis variables.

title1 'Selective Associations';
proc summary data=sashelp.class;
var height weight;
output out =summrydat 
       n   =ht_n  wt_n
       mean(weight)= wt_mean
       std(height) = ht_std;
run;

Alternate forms of the statistic selections (in this case for the MEAN) could have included the following:

mean(weight height)=wt_mean ht_mean

mean(weight)=wt_mean 
mean(height)=ht_mean

Automatic Naming of Summary Variables
When you do not NEED to control the naming of the new summary variables, the AUTONAME and AUTOLABEL options can
be used on the OUTPUT statement.

The AUTONAME option allows you to select statistics without picking a name for the resulting variable in the OUTPUT table. 
This eliminates naming conflicts.  The AUTOLABEL option creates a label for variables added to the OUT= data set.

title1 'Using AUTONAME';
proc summary data=sashelp.class;
var height weight;
output out =summrydat 
       n   =
       mean=
       std = / autoname;
run;

Notice that the names are in the form of variable_statistic.  This is a nicely consistent, dependable, and usable naming convention



6

CLASS and a Printed Table

The MEANS Procedure
              Analysis Variable : Height

                   N
    Age    Sex   Obs    N          Mean     Std Dev
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
     12    F       2    2    58.0500000   2.4748737
           M       3    3    60.3666667   3.9323445

     13    F       2    2    60.9000000   6.2225397
           M       1    1    62.5000000           .

     14    F       2    2    63.5500000   1.0606602
           M       2    2    66.2500000   3.8890873
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

CLASS and a Summary Data Set

Obs    Age    Sex    _TYPE_    _FREQ_    ht_n    ht_mean     ht_sd

  1      .              0        12       12     61.7583    3.97868
  2      .     F        1         6        6     60.8333    3.90470
  3      .     M        1         6        6     62.6833    4.18637
  4     12              2         5        5     59.4400    3.29742
  5     13              2         3        3     61.4333    4.49592
  6     14              2         4        4     64.9000    2.80119
  7     12     F        3         2        2     58.0500    2.47487
  8     12     M        3         3        3     60.3667    3.93234
  9     13     F        3         2        2     60.9000    6.22254
 10     13     M        3         1        1     62.5000     .
 11     14     F        3         2        2     63.5500    1.06066
 12     14     M        3         2        2     66.2500    3.88909

Using the CLASS Statement
The CLASS statement can be used to create subgroups.  Unlike the BY statement the data do not have to be sorted prior to its
use.  Like in most other procedures that utilize the CLASS statement, there can be one or more classification variables.

In a Printed Table 
When the resulting table is to be printed, CLASS creates one summary for each combination of classification variables.  

title1 'CLASS and a Printed
Table';
proc means
data=sashelp.class(where=(age
in(12,13,14)))
           n mean std;
class age sex;
var height;
run;

In a Summary Data Set 
When creating a summary data set, one can get not only the
classification variable interaction statistics, but the main
factor statistics as well.  This can be very helpful to the
statistician.

title1 'CLASS and a Summary Data Set';
proc summary data=sashelp.class(where=(age in(12,13,14)));
class age sex;
var height;
output out=clsummry n=ht_n mean=ht_mean std=ht_sd;
run

A PROC PRINT of the data set CLSUMMRY shows:

Two additional variables have been added to the summary data set; _TYPE_ (which is described below in more detail), and
_FREQ_ (which counts observations).  Although not apparent in this example, _FREQ_ counts all observations, while the N



7

Understanding _TYPE_
                                                   mean
Obs    RACE    EDU    SYMP    _TYPE_    _FREQ_      HT
  1              .               0         8      66.25
  2              .     01        1         2      64.00
  3              .     02        1         4      66.50
  4              .     03        1         2      68.00
  5             12               2         4      67.50
  6             14               2         2      64.00
  7             15               2         2      66.00
  8             12     02        3         2      67.00
  9             12     03        3         2      68.00
 10             14     01        3         2      64.00
 11             15     02        3         2      66.00
 12     1        .               4         6      67.00
 13     4        .               4         2      64.00
 14     1        .     02        5         4      66.50
 15     1        .     03        5         2      68.00
 16     4        .     01        5         2      64.00
 17     1       12               6         4      67.50
 18     1       15               6         2      66.00
 19     4       14               6         2      64.00
 20     1       12     02        7         2      67.00
 21     1       12     03        7         2      68.00
 22     1       15     02        7         2      66.00
 23     4       14     01        7         2      64.00

statistic only counts observations with non-missing values.

If you only want the statistics for the highest order interaction, you can use the NWAY option on the PROC statement.

proc summary data=sashelp.class(where=(age in(12,13,14)))
   nway;

Understanding _TYPE_ 
The _TYPE_ variable in the output data set  helps us track the level of summarization, and can be used to distinguish the sets of
statistics.  Notice in the previous example that _TYPE_ changes for each level of summarization.

_TYPE_ = 0 Summarize across all classification variables
_TYPE_ = 1 Summarize as if the right most classification variable (SEX) was the only one
_TYPE_ = 2 Summarize as if the next to the right most classification variable (AGE) was the only one
_TYPE_ = 3 Interaction of the two classification variables.

In the following example there are three CLASS variables and _TYPE_ ranges from 0 to 7.

title1 'Understanding _TYPE_';
proc summary data=advrpt.demog(where=(race in('1','4')
                                 & 12 le edu le 15
                                 & symp in('01','02','03')));
class race edu symp;
var ht;
output out=stats mean= meanHT;
run;



8

When calculating the value of _TYPE_, assign a zero (0) when summarizing over a CLASS variable and assign a one (1) when
summarizing for the CLASS variable.  In the table below the zeros and ones associated with the class variables form a binary
value.  This binary value can be converted to decimal to obtain _TYPE_.

CLASS VARIABLES

Observations RACE EDU SYMP Binary Value _TYPE_

1 0 0 0 0 0

2 - 4 0 0 1 1 1

5 - 7 0 1 0 10 2

8 - 11 0 1 1 11 3

12 - 13 1 0 0 100 4

14 - 16 1 0 1 101 5

17 - 19 1 1 0 110 6

20 - 23 1 1 1 111 7

22=4 21=2 20=1

A binary value of 110 = 1*22 + 1*21 + 0*20 = 1*4 + 1*2 + 0*1 = 6 = _TYPE_

Some SAS programmers find converting binary values to decimal values a bit tedious.  Fortunately the developers at SAS
Institute have provided us with alternatives.  

Using CHARTYPE

The CHARTYPE option causes _TYPE_ to be displayed as a character variable in binary form rather than as a decimal value.

title1 'Understanding _TYPE_ Using CHARTYPE';
proc summary data=advrpt.demog(where=(race in('1','4')
                                  & 12 le edu le 15
                                  & symp in('01','02','03')))
             chartype;
class race edu symp;
var ht;
output out=stats mean= meanHT;
run;



9

Understanding _TYPE_ Using CHARTYPE

                                                   mean
Obs    RACE    EDU    SYMP    _TYPE_    _FREQ_      HT

  1              .             000         8      66.25
  2              .     01      001         2      64.00
  3              .     02      001         4      66.50
  4              .     03      001         2      68.00
  5             12             010         4      67.50
  6             14             010         2      64.00
  7             15             010         2      66.00
  8             12     02      011         2      67.00
  9             12     03      011         2      68.00
                    . . . . portions of the table not shown . . . .

CREATING SUMMARY DATA SUBSETS
Once you have started to create summary data sets with MEANS/SUMMARY, you will soon discover how very useful they can
be.  Of course you will often find that you do not need all the information contained in the summary data set and that you need to
create a data subset.  As with most things in SAS there are multiple ways to do this.  We have already seen the use of the NWAY
option to subset for only the highest order interaction.  This is fine but not very flexible.  Let’s look at some techniques that are a
bit more useful.

Select Rows Using _TYPE_
Once you understand and can predict the value of _TYPE_, it can be used to provide subsetting information in a followup DATA
step.  Suppose that in the previous example we would like to have only those rows for which EDU is a factor.  Our DATA step
might be written something like:

data edufactor;
set stats;
where _type_ in(2,3,6,7);
run;



10

Using LEVELS and WAYS Options

Obs   RACE   EDU   _WAY_   _TYPE_   _LEVEL_   _FREQ_    meanHT

  1            .     0        0         1       75     67.5200
  2           10     1        1         1       11     71.3636
  3           12     1        1         2       18     66.8889
  4           13     1        1         3        4     70.0000
  5           14     1        1         4       11     64.1818
  6           15     1        1         5        7     65.2857
  7           16     1        1         6       10     70.4000
  8           17     1        1         7       10     65.2000
  9           18     1        1         8        4     69.0000
 10    1       .     1        2         1       41     68.4390
 11    2       .     1        2         2       17     67.6471
 12    3       .     1        2         3        9     64.8889
 13    4       .     1        2         4        4     64.5000
 14    5       .     1        2         5        4     66.5000
 15    1      10     2        3         1       11     71.3636
 16    1      12     2        3         2       15     67.0667
 17    1      13     2        3         3        4     70.0000
 18    1      15     2        3         4        5     64.2000
 19    1      16     2        3         5        2     71.0000
 20    1      17     2        3         6        2     63.0000
 21    1      18     2        3         7        2     73.0000
 22    2      12     2        3         8        3     66.0000
 23    2      16     2        3         9        6     71.0000
 24    2      17     2        3        10        8     65.7500
 25    3      14     2        3        11        7     64.0000
 26    3      15     2        3        12        2     68.0000
 27    4      14     2        3        13        4     64.5000
 28    5      16     2        3        14        2     68.0000
 29    5      18     2        3        15        2     65.0000

Using the WAYS and LEVELS Options
The _TYPE_ variable is only one of several ways to identify levels of summarizations in the summary data set.  The WAYS and
LEVELS options on the OUTPUT statement provide additional discrimination capabilities.  These options add the variables
_LEVEL_ and _WAY_ to the summary data table.

title1 'Using LEVELS and WAYS Options';
proc summary data=advrpt.demog;
class race edu;
var ht;
output out=stats 
       mean= meanHT
       /levels ways;
run;

LEVELS option
Adds the variable _LEVEL_ to the OUT= data
table.  This numeric variable counts the
observations within _TYPE_.  This means that
when FIRST._TYPE_ is true _LEVEL_ will
equal 1.

WAYS option
Adds the variable _WAY_ to the OUT= data
table.  This numeric variable equals the
number of classification variables that were
used to calculate each observation e.g. for a
three way interaction _WAY_ will equal 3.

Using the WAYS and TYPE Statements
In addition to the WAYS and LEVELS options on the OUTPUT statement there are also the WAYS and TYPE statements than
can also be used to control what information is written to the summary data set.  These have the further advantage of controlling
what is actually calculated and can therefore also save computer resources when there are a large number of classification
variables.



11

Using the WAYS Statement

Obs   RACE   EDU   SYMP  _TYPE_  _FREQ_   meanHT

  1            .            0       64    67.1875
  2           10    04      3        6    74.0000
  3           10    10      3        3    69.0000
  4           12    02      3        2    67.0000
                   . . . . portions of the table not shown . . . .

Using the TYPES Statement

Obs  RACE  EDU  SYMP  _TYPE_  _FREQ_   meanHT

  1         10           2       9    72.3333
  2         12           2      15    66.2667
  3         13           2       2    68.0000
  4         14           2       9    64.0000
  5         15           2       7    65.2857
  6         16           2      10    70.4000
  7         17           2      10    65.2000
  8         18           2       2    65.0000
  9   1      .   01      5       2    71.0000
 10   1      .   02      5       4    66.5000
 11   1      .   03      5       2    68.0000
            . . . . portions of the table not shown . . . .

Controlling Summary Subsets Using WAYS
The WAYS statement can be used to specify a list of combinations of class variables, which are to be displayed.  Combinations
of the WAYS statement for three classification variables include the following summarizations:

ways 0; across all class variables
ways 1; each classification variable (no cross products)
ways 2; each two way combination of the classification variables
ways 3; three way combination for three classification variables this is the same as using the NWAY option

when there are three classification variables.
ways 0,3; lists of numbers are acceptable

When the number of classification variables becomes large the WAYS statement can utilize an incremental list.

ways 0 to 9 by 3;

In the following example, the main effect summaries (_TYPE_ = 1, 2) are not even calculated.

title1 'Using the WAYS Statement';
proc summary        

             data=advrpt.demog;
class race edu symp;
var ht;
ways 0,2;
output out=stats 

            mean= meanHT;
run;

Controlling Summary Subsets Using TYPES
The TYPES statement can be used to select and limit
the data roll up summaries.  The TYPES statement
eliminates much of your need to understand the automatic variable
_TYPE_.  The TYPES statement is used to list those combinations
of the classification variable that are desired.  Like the WAYS
statement this also can be used to limit the number of calculations
that need to be performed.

title1 'Using the TYPES Statement';
proc summary data=advrpt.demog;
class race edu symp;
var ht;
types edu race*symp;
output out=stats mean= meanHT;
run;



12

Using the CLASSDATA and EXCLUSIVE Options

                                                   mean
Obs    RACE    EDU    SYMP    _TYPE_    _FREQ_      HT

  1              .               0         8      66.25
  2              .     00        1         0        .
  3              .     01        1         2      64.00
  4              .     02        1         4      66.50
  5              .     03        1         2      68.00
  6              0               2         0        .
  7             12               2         4      67.50
  8             14               2         2      64.00

                    . . . . portions of the table not shown . . . .

For the following CLASS statement

class race edu symp; 

variations of the TYPES statement could include:

types ();
types race*edu edu*symp;
types race*(edu symp);

Using the CLASSDATA= and EXCLUSIVE Options
You can specify which combinations of levels of the classification variables are to appear in the report by creating a data set that
contains the combinations of interest.  These can include levels that do not exist in the data itself, but that are to none-the-less
appear in the data set or report.  The EXCLUSIVE option forces only those levels in the CLASSDATA= data set to appear in the
report.

The following example builds the data set that is to be used with the CLASSDATA= option.  It also adds a level for each
classification variable that does not exist in the data.

title1 'Using the CLASSDATA and EXCLUSIVE Options';
data selectlevels(keep=race edu symp);
set advrpt.demog(where=(race in('1','4')
                      & 12 le edu le 15
                      & symp in('01','02','03')));
output;
* For fun add some nonexistent levels;
if _n_=1 then do;
   edu=0;
   race='0';
   symp='00';
   output;
end;
run;
proc summary 

           data=advrpt.demog
      classdata=selectlevels
      exclusive;
class race edu symp;
var ht;
output out=stats mean=
meanHT;
run;

The summary lines for observations 2 and 6 represent
levels of the classification variables that do not appear in
the data.  They were generated thru a combination of the
CLASSDATA= data set and the EXCLUSIVE option.

Using the COMPLETETYPES Option
All combinations of the classification variables may not exist in the data and therefore those combinations will not appear in the
summary table.  If all possible combinations are desired, regardless as to whether or not they exist in the data, use the
COMPLETETYPES option on the PROC statement.

title1 'Using the COMPLETETYPES Option';
proc summary data=advrpt.demog(where=(race in('1','4')
                      & 12 le edu le 15
                      & symp in('01','02','03')))



13

Using the COMPLETETYPES Option

                                                   mean
Obs    RACE    EDU    SYMP    _TYPE_    _FREQ_      HT

  1              .               0         8      66.25
  2              .     01        1         2      64.00
  3              .     02        1         4      66.50
  4              .     03        1         2      68.00
  5             12               2         4      67.50
  6             14               2         2      64.00
  7             15               2         2      66.00
  8             12     01        3         0        .
  9             12     02        3         2      67.00

                    . . . . portions of the table not shown . . . .

             completetypes;
class race edu symp;
var ht;
output out=stats mean= meanHT;
run;

In the data there are no observations with both EDU=12 and SYMP=’01', however since both levels exist somewhere in the data,
the COMPLETETYPES option causes the combination to appear in the summary data set (obs=8).

FINDING THE EXTREME VALUES
When working with data, it is not at all unusual to want to be able to identify the observations that contain the highest or lowest
values of the analysis variables.  These extreme values are automatically displayed in PROC UNIVARIATE output, but must be
requested in MEANS/SUMMARY.

As was shown earlier the MIN and MAX statistics show the extreme value, unfortunately they do not identify the observation
that contains the extreme.  Fortunately there are a couple of ways to do this.

Using MAXID and MINID
The MAXID and MINID options in the OUTPUT statement can be used to identify the observations with the maximum and
minimum values.  The general form of the statement is:

MAXID(analysis var(ID var))=PDV var

A new variable is added to the OUTPUT data set which takes on the value of the ID variable for the maximum observation. 

title1 'Using MAXID';
proc summary data=advrpt.demog;
class race edu;
var ht wt;
output out=stats
       mean= meanHT MeanWT
       max=maxHt maxWT
       maxid(ht(subject) wt(subject))=maxHtSubject MaxWtSubject
       ;
run; 



14

Using MAXID

                                                        max    max     maxHt      MaxWt
Obs  RACE  EDU  _TYPE_  _FREQ_     meanHT     MeanWT     Ht     WT    Subject    Subject

  1          .     0      75      67.5200    160.267     74    240      110        137
  2         10     1      11      71.3636    194.091     74    215      110        109
  3         12     1      18      66.8889    167.722     70    240      106        137
  4         13     1       4      70.0000    197.000     72    215      148        117
                    . . . . portions of the table not shown . . . .

The OUTPUT statement could also have been written as:

output out=stats
       mean= meanHT MeanWT
       max=maxHt maxWT
       maxid(ht(subject))=maxHtSubject
       maxid(wt(subject))=maxWtSubject
       ;

When more than one variable is needed to identify the observation with the extreme value, the MAXID supports a list.  As before
when specifying lists, there is a one-to-one correspondence between the two lists.  In the following OUTPUT statement both the
SUBJECT and SSN are used in the list of identification variables.  Consequently a new variable is created for each in the
summary data set.

output out=stats
       mean= meanHT MeanWT
       max=maxHt maxWT
       maxid(ht(subject ssn))=MaxHtSubject MaxHtSSN
       maxid(wt(subject ssn))=MaxWtSubject MaxWtSSN
       ;

The MAXID and MINID options allow you to only capture a single extreme.  It is also possible to display a group of the extreme
values using the GROUPID option.

Using the GROUPID Option
Like the MAXID and MINID options, this option allows you to capture the maximum or minimum value and associated ID
variable.  More importantly, however, you may select more than just the single extreme value.

title1 'Using GROUPID';
proc summary data=advrpt.demog;
class race edu;
var ht wt;
output out=stats
       mean= MeanHT MeanWT
       max(wt)=maxWT ì   
       idgroup(max(wt)out[2](wt subject race)=maxval ñ)
       ;           í      î         ï           ð
run; 



15

Using GROUPID
                                          
                                           max                   subject_ subject_ ñ
Obs RACE EDU _TYPE_ _FREQ_  MeanHT  MeanWT  WT maxval_1 maxval_2     1        2    RACE_1 RACE_2
                                            ì         ð
  1        .    0     75   67.5200 160.267 240    240      215      137      109     2      1
  2       10    1     11   71.3636 194.091 215    215      215      109      143     1      1
  3       12    1     18   66.8889 167.722 240    240      185      137      119     2      1
  4       13    1      4   70.0000 197.000 215    215      215      117      163     1      1
  5       14    1     11   64.1818 108.091 115    115      115      131      141     4      4

                    . . . . portions of the table not shown . . . .

Using the DESCENDING CLASS Option

Obs    RACE    _TYPE_    _FREQ_     MeanHT     MeanWT

 1                0        76      67.5526    160.461
 2      5         1         4      66.5000    147.000
 3      4         1         4      64.5000    113.500
 4      3         1         9      64.8889    111.222
 5      2         1        17      67.6471    162.000
 6      1         1        42      68.4762    176.143

ì MAX statistic is superfluous in this example, and is included only for your reference.
í We are asking for the maximum of WT.  GROUPID also is available for MIN, therefore in this example we could have

also specified:

idgroup(min(ht)out[3](ht subject race)=minht minsub minrace)

î The top 2 values are to be shown
ï This is a list of variables that will be shown as observation identifiers.  The analysis variable is usually included.  The

MAX statistic has also been requested for comparison purposes ì, however it will only provide one value and not the
next highest.

ð You can choose the prefix of the ID variable or you can let the procedure do it for you ñ.  In either case, a number is
appended to the variable name.  In this example we can see that the second heaviest subject in the study was subject 137
with a weight of 215 pounds and a RACE of 1.

DOING MORE WITH MEANS/SUMMARY
Using Options on CLASS Statements
The CLASS statement can now accept options.  These include: 

ASCENDING / DESCENDING
GROUPINTERNAL
MISSING
MLF
ORDER
preloaded format options (discussed below)

Most of the following discussion applies to virtually all SAS procedures that accept the CLASS statement.

ASCENDING / DESCENDING
Normally output (in tables or a summary data set) is placed in ascending order for each classification variable.  You can change
this by using the DESCENDING option on the CLASS statement.

title1 'Using the DESCENDING
CLASS Option';
proc summary
data=advrpt.demog;
class race/descending;
var ht wt;
output out=stats
       mean= MeanHT MeanWT
       ; run;



16

GROUPINTERNAL
When a classification variable is associated with a format, the format is used when forming groups.

proc format;
value edulevel
0-12 = 'High School'
13-16= 'College'
17-high='Post Graduate';
run;

title1 'Without Using the GROUPINTERNAL CLASS Option';
proc summary data=advrpt.demog;
class edu;
var ht wt;
output out=stats
       mean= MeanHT MeanWT
       ;   
format edu edulevel.; 
run;

The resulting table will show at most three levels for EDU.  To use the original data values (internal values), the
GROUPINTERNAL option is added to the CLASS statement.

class edu/groupinternal;

MISSING
When a classification variable takes on a missing value that observation is eliminated from the analysis.  If a missing value is OK
or if the analyst needs to have it included in the summary, the MISSING option can be used.  Most procedures that have either an
implicit or explicit CLASS statement also have a MISSING option.  However when the MISSING option is used on the PROC
statement it is applied to all the classification variables and this may not be acceptable.  By using the MISSING option on the
CLASS statement you can control which classification variables are to be handled differently.

In the following example there are three classification variables.  However the MISSING option has only been applied to two of
them. 

title1 'Using the MISSING CLASS Option';
proc means data=advrpt.demog n mean std;
class race ;
class edu symp/ missing;
var ht wt;
run; 

ORDER
When classification variables are displayed or written to a table the values are ordered according to one of several possible
schemes.  These include:

• data order is based on the order of the incoming data
• formatted values are formatted and then ordered (default when the variable is formatted)
• freq the order is based on the frequency of the class level
• unformatted same as INTERNAL or GROUPINTERNAL 

Using the order=freq option on the CLASS statement causes the table to be ordered according to the most common levels of
education.

class edu/order=freq;



17

Using the ORDER CLASS Option

The MEANS Procedure

    years of      N
   education    Obs    Variable    Label                N            Mean         Std Dev
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
          12     19    HT          height in inches    19      66.9473684       2.7582942
                       WT          weight in pounds    19     171.5263158      32.2703311

          14     11    HT          height in inches    11      64.1818182       0.4045199
                       WT          weight in pounds    11     108.0909091       4.3921417

          10     11    HT          height in inches    11      71.3636364       3.2022719
                       WT          weight in pounds    11     194.0909091      19.0811663

          17     10    HT          height in inches    10      65.2000000       2.3475756
                       WT          weight in pounds    10     145.2000000      25.0900600

                    . . . . portions of the table not shown . . . .

Using Multiple CLASS Statements
Because CLASS statements now accept options, and because those options may not apply to all the classification variables, it is
often necessary to specify multiple CLASS statements - each with its own set of options. 

With or without options, when multiple CLASS statements are specified, the order of the statements themselves becomes
important. The following CLASS statement

class race edu;

could be rewritten as

class race;
class edu;

PRELOADED FORMATS
Several options and techniques are available to control which levels of classification variables are to appear in the summary. 
Those that were discussed earlier in this paper include the CLASSDATA and COMPLETETYPES options.  Also discussed were
the WAYS and TYPES statements, as well as the WAYS and LEVELS options on the OUTPUT statement.

A related set of options come under the general topic of Preloaded Formats.  Variations of these options are available for most of
the procedures that utilize classification variables.  Like the others listed above these techniques/options are used to control the
relationship of levels of classification variables that may not appear in the data and how those levels are to appear (or not appear)
in the summary.

Generally speaking when a level of a classification variable is not included in the data, the associated row will not appear in the
table.  This behavior relative to the missing levels can be controlled through the use of preloaded formats.

For the MEANS/SUMMARY procedures, options used to preload formats include:

PRELOADFMT Loads the format levels prior to execution.  This option will always be present when you want to use a
preloaded format.

EXCLUSIVE Only data levels that are included in the format definition are to appear in summary table

COMPLETETYPES All levels representing format levels are to appear in the summary



18

Preloading and the EXCLUSIVE Option

                                   mean
Obs     SYMP      _TYPE_  _FREQ_    HT

 1                   0      14     67.0
 2   Sleepiness      1       4     67.5
 3   Coughing        1      10     66.8

Preloading and the COMPLETETYPES Option

Obs    SYMP          _TYPE_    _FREQ_     meanHT

  1                     0        65      67.2000
  2    Bad Code         1         0        .
  3    Sleepiness       1         4      67.5000
  4    Coughing         1        10      66.8000
  5    03               1         4      66.5000
  6    04               1        13      68.6923

   . . . . portions of the table not shown . . . .

It is the interaction of these three options that gives us a wide range of possible outcomes.  In each case the option
PRELOADFMT will be present.

As the name of the technique implies, the control is maintained through the use of  user defined formats.  For the examples that
follow, the format $SYMPX has been created, and it contains one level, ’00', that is not in the data.  In the data the values of
SYMP range from ‘01' to ‘10'.

proc format;
value $sympx
  '01' = 'Sleepiness'
  '02' = 'Coughing'
  '00' = 'Bad Code' ;
run;

PRELOADFMT with EXCLUSIVE
Preloading with the CLASS statement options PRELOADFMT and EXCLUSIVE limits the levels of the classification variable
to those that are both on the format and in the data.  Essentially the format acts as a filter without resorting to either a subsetting
IF or a WHERE clause.

title1 'Preloading and the EXCLUSIVE Option';
proc summary data=advrpt.demog;
class symp / preloadfmt 
             exclusive;
var ht;
output out=stats mean= meanHT;
format symp $sympx.;
run;

Symptoms that are not both on the format $SYMPX. and in the data, are
not included on the summary table. 

PRELOADFMT with the COMPLETETYPES Option
The COMPLETETYPES option requests that all combinations of levels appear in the summary.  When it is used with preloaded
formats, the complete list of levels comes from the format rather than from the data itself.  In this example the format %SYMPX.
is again preloaded, however rather than using the EXCLUSIVE CLASS statement option, the COMPLETTYPES option appears
on the PROC statement.

title1 'Preloading and the COMPLETETYPES Option';
proc summary data=advrpt.demog completetypes;
class symp / preloadfmt;
var ht;
output out=stats mean= meanHT;
format symp $sympx.;
run;

The summary now contains an observation for each SYMP in
the data as well as each in the format $SYMPx.  



19

Preloading With Both
the COMPLETETYPES and EXCLUSIVE Options

                                         mean
Obs       SYMP       _TYPE_    _FREQ_     HT

 1                      0        14      67.0
 2     Bad Code         1         0        .
 3     Sleepiness       1         4      67.5
 4     Coughing         1        10      66.8

PRELOADFMT with the COMPLETETYPES and the EXCLUSIVE Options
When a preloaded format is used with both the COMPLETETYPES and the EXCLUSIVE options, the summary includes all
levels of the format, but not necessarily all levels in the data.

title1 'Preloading With Both';
title2 'the COMPLETETYPES and EXCLUSIVE Options';
proc summary data=advrpt.demog 

                  completetypes;
class symp / preloadfmt 

                  exclusive;
var ht;
output out=stats 

            mean= meanHT;
format symp $sympx.;
run;

SUMMARY
The MEANS /SUMMARY procedure produces a wide variety of summary reports and summary data tables.  It is very flexible
and, while it can be quite complex, a few basic statements allow the user to create useful summaries.  

As you develop a deeper knowledge of the MEANS/SUMMARY procedure, you will find that the generation of highly
sophisticated summarizations is possible from within a single step. 

ABOUT THE AUTHOR
Art Carpenter’s publications list includes four books, and numerous papers and posters presented at SUGI, SAS Global Forum,
and other user group conferences.  Art has been using SAS® since 1976 and has served in various leadership positions in local,
regional, national, and international user groups.  He is a SAS Certified ProfessionalTM and through California Occidental
Consultants he teaches SAS courses and provides contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

TRADEMARK INFORMATION
SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other SAS Institute Inc. product or service names
are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.


